Background: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy, often diagnosed at an advanced stage due to its insidious progression and the absence of effective early detection strategies. Accurate diagnosis and staging are critical for optimizing treatment selection and improving patient survival. Contrast-enhanced computed tomography (CT) remains the diagnostic standard for PDA; however, its sensitivity is limited by interobserver variability and the frequent absence of overt morphological abnormalities in early stage disease. Summary: Artificial intelligence (AI) has emerged as a promising tool for overcoming the inherent limitations of conventional radiologic assessment by leveraging radiomics and deep learning models to extract subtle imaging signatures of PDA that are imperceptible to the human eye. AI-driven models have demonstrated the ability to detect pre-diagnostic PDA on CT scans months to years before clinical presentation by identifying textural and structural changes in the pancreas. Furthermore, automated volumetric pancreas segmentation enhances reproducibility and facilitates the discovery of imaging biomarkers associated with early carcinogenesis. Despite these advances, key challenges remain, including dataset heterogeneity, model interpretability, and prospective validation in real-world clinical settings. Key Messages: AI-driven approaches offer a transformative opportunity to augment CT-based PDA detection, reduce diagnostic uncertainty, and facilitate earlier intervention. However, robust external validation, integration into clinical workflows, and prospective trials are essential to establish AI as a reliable adjunct in PDA diagnosis and staging.

1.
Siegel
RL
,
Giaquinto
AN
,
Jemal
A
.
Cancer statistics, 2024
.
CA Cancer J Clin
.
2024
;
74
(
1
):
12
49
.
2.
Institute NC
. Cancer stat facts: pancreatic cancer n. d [cited 2025 2/27/2028]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
3.
Holly
EA
,
Chaliha
I
,
Bracci
PM
,
Gautam
M
.
Signs and symptoms of pancreatic cancer: a population-based case-control study in the San Francisco Bay area
.
Clin Gastroenterol Hepatol
.
2004
;
2
(
6
):
510
7
.
4.
Singhi
AD
,
Koay
EJ
,
Chari
ST
,
Maitra
A
.
Early detection of pancreatic cancer: opportunities and challenges
.
Gastroenterology
.
2019
;
156
(
7
):
2024
40
.
5.
Kenner
B
,
Chari
ST
,
Kelsen
D
,
Klimstra
DS
,
Pandol
SJ
,
Rosenthal
M
, et al
.
Artificial intelligence and early detection of pancreatic cancer: 2020 summative review
.
Pancreas
.
2021
;
50
(
3
):
251
79
.
6.
Canto
MI
,
Almario
JA
,
Schulick
RD
,
Yeo
CJ
,
Klein
A
,
Blackford
A
, et al
.
Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance
.
Gastroenterology
.
2018
;
155
(
3
):
740
51.e2
.
7.
Klatte
DCF
,
Boekestijn
B
,
Onnekink
AM
,
Dekker
FW
,
van der Geest
LG
,
Wasser
M
, et al
.
Surveillance for pancreatic cancer in high-risk individuals leads to improved outcomes: a propensity score-matched analysis
.
Gastroenterology
.
2023
;
164
(
7
):
1223
31.e4
.
8.
Chari
ST
,
Kelly
K
,
Hollingsworth
MA
,
Thayer
SP
,
Ahlquist
DA
,
Andersen
DK
, et al
.
Early detection of sporadic pancreatic cancer: summative review
.
Pancreas
.
2015
;
44
(
5
):
693
712
.
9.
Truty
MJ
,
Kendrick
ML
,
Nagorney
DM
,
Smoot
RL
,
Cleary
SP
,
Graham
RP
, et al
.
Factors predicting response, perioperative outcomes, and survival following total neoadjuvant therapy for borderline/locally advanced pancreatic cancer
.
Ann Surg
.
2021
;
273
(
2
):
341
9
.
10.
Abdelrahman
AM
,
Goenka
AH
,
Alva-Ruiz
R
,
Yonkus
JA
,
Leiting
JL
,
Graham
RP
, et al
.
FDG-PET predicts neoadjuvant therapy response and survival in borderline resectable/locally advanced pancreatic adenocarcinoma
.
J Natl Compr Canc Netw
.
2022
;
20
(
9
):
1023
32.e3
.
11.
Carlson
DM
,
Abdelrahman
AM
,
Adjei Antwi
SK
,
Tomlinson
JL
,
Trivedi
K
,
Karbhari
A
, et al
.
Baseline characteristics and use of pretherapeutic 18 F-Fluorodeoxyglucose-PET for pancreatic cancer
.
J Am Coll Surg
.
2024
;
239
(
1
):
9
17
.
12.
Overbeek
KA
,
Goggins
MG
,
Dbouk
M
,
Levink
IJM
,
Koopmann
BDM
,
Chuidian
M
, et al
.
Timeline of development of pancreatic cancer and implications for successful early detection in high-risk individuals
.
Gastroenterology
.
2022
;
162
(
3
):
772
85.e4
.
13.
Chhoda
A
,
Vodusek
Z
,
Wattamwar
K
,
Mukherjee
E
,
Gunderson
C
,
Grimshaw
A
, et al
.
Late-stage pancreatic cancer detected during high-risk individual surveillance: a systematic review and meta-analysis
.
Gastroenterology
.
2022
;
162
(
3
):
786
98
.
14.
Mukherjee
S
,
Patra
A
,
Khasawneh
H
,
Korfiatis
P
,
Rajamohan
N
,
Suman
G
, et al
.
Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis
.
Gastroenterology
.
2022
;
163
(
5
):
1435
46.e3
.
15.
Toshima
F
,
Watanabe
R
,
Inoue
D
,
Yoneda
N
,
Yamamoto
T
,
Sasahira
N
, et al
.
CT abnormalities of the pancreas associated with the subsequent diagnosis of clinical stage I pancreatic ductal adenocarcinoma more than 1 Year later: a case-control study
.
AJR Am J Roentgenol
.
2021
;
217
(
6
):
1353
64
.
16.
Antony
A
,
Mukherjee
S
,
Bi
Y
,
Collisson
EA
,
Nagaraj
M
,
Murlidhar
M
, et al
.
AI-Driven insights in pancreatic cancer imaging: from pre-diagnostic detection to prognostication
.
Abdom Radiol
.
2024
.
17.
Huang
C
,
Shen
Y
,
Galgano
SJ
,
Goenka
AH
,
Hecht
EM
,
Kambadakone
A
, et al
.
Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques
.
Abdom Radiol
.
2025
;
50
(
4
):
1731
43
.
18.
Huang
C
,
Hecht
EM
,
Soloff
EV
,
Tiwari
HA
,
Bhosale
PR
,
Dasayam
A
, et al
.
Imaging for early detection of pancreatic ductal adenocarcinoma: updates and challenges in the implementation of screening and surveillance programs
.
AJR Am J Roentgenol
.
2024
;
223
(
2
):
e2431151
.
19.
Huang
L
,
Jansen
L
,
Balavarca
Y
,
Babaei
M
,
Van Der Geest
L
,
Lemmens
V
, et al
.
Stratified survival of resected and overall pancreatic cancer patients in Europe and the USA in the early twenty-first century: a large, international population-based study
.
BMC Med
.
2018
;
16
(
1
):
125
.
20.
Zhang
Z
,
Keles
E
,
Durak
G
,
Taktak
Y
,
Susladkar
O
,
Gorade
V
, et al
.
Large-scale multi-center CT and MRI segmentation of pancreas with deep learning
.
Med Image Anal
.
2025
;
99
:
103382
.
21.
Khasawneh
H
,
Patra
A
,
Rajamohan
N
,
Suman
G
,
Klug
J
,
Majumder
S
, et al
.
Volumetric pancreas segmentation on computed tomography: accuracy and efficiency of a convolutional neural network versus manual segmentation in 3D slicer in the context of interreader variability of expert radiologists
.
J Comput Assist Tomogr
.
2022
;
46
(
6
):
841
7
.
22.
Panda
A
,
Korfiatis
P
,
Suman
G
,
Garg
SK
,
Polley
EC
,
Singh
DP
, et al
.
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset
.
Med Phys
.
2021
;
48
(
5
):
2468
81
.
23.
Wasserthal
J
,
Breit
H-C
,
Meyer
MT
,
Pradella
M
,
Hinck
D
,
Sauter
AW
, et al
.
TotalSegmentator: robust segmentation of 104 anatomic structures in CT images
.
Radiol Artif Intell
.
2023
;
5
(
5
):
e230024
.
24.
Lim
S-H
,
Kim
YJ
,
Park
Y-H
,
Kim
D
,
Kim
KG
,
Lee
D-H
.
Automated pancreas segmentation and volumetry using deep neural network on computed tomography
.
Sci Rep
.
2022
;
12
(
1
):
4075
.
25.
Mukherjee
S
,
Antony
A
,
Patnam
NG
,
Trivedi
KH
,
Karbhari
A
,
Nagaraj
M
, et al
.
Pancreas segmentation using AI developed on the largest CT dataset with multi-institutional validation and implications for early cancer detection
.
Sci Rep
.
2025
;
15
(
1
):
17096
.
26.
Qureshi
TA
,
Gaddam
S
,
Wachsman
AM
,
Wang
L
,
Azab
L
,
Asadpour
V
, et al
.
Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images
.
Cancer Biomark
.
2022
;
33
(
2
):
211
7
.
27.
Javed
S
,
Qureshi
TA
,
Gaddam
S
,
Wang
L
,
Azab
L
,
Wachsman
AM
, et al
.
Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images
.
Front Oncol
.
2022
;
12
:
1007990
.
28.
Chen
W
,
Zhou
Y
,
Asadpour
V
,
Parker
RA
,
Puttock
EJ
,
Lustigova
E
, et al
.
Quantitative radiomic features from computed tomography can predict pancreatic cancer up to 36 Months before diagnosis
.
Clin Transl Gastroenterol
.
2023
;
14
(
1
):
e00548
.
29.
Torphy
RJ
,
Wang
Z
,
True-Yasaki
A
,
Volmar
KE
,
Rashid
N
,
Yeh
B
, et al
.
Stromal content is correlated with tissue site, contrast retention, and survival in pancreatic adenocarcinoma
.
JCO Precis Oncol
.
2018
;
2018
(
2
):
1
12
.
30.
Liudahl
SM
,
Betts
CB
,
Sivagnanam
S
,
Morales-Oyarvide
V
,
da Silva
A
,
Yuan
C
, et al
.
Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome
.
Cancer Discov
.
2021
;
11
(
8
):
2014
31
.
31.
Mukherjee
S
,
Korfiatis
P
,
Patnam
NG
,
Trivedi
KH
,
Karbhari
A
,
Suman
G
, et al
.
Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods
.
Abdom Radiol
.
2024
;
49
(
3
):
964
74
.
32.
Evans
WJ
,
Morley
JE
,
Argilés
J
,
Bales
C
,
Baracos
V
,
Guttridge
D
, et al
.
Cachexia: a new definition
.
Clin Nutr
.
2008
;
27
(
6
):
793
9
.
33.
Klatte
DCF
,
Weston
A
,
Ma
Y
,
Sledge
H
,
Bali
A
,
Bolan
C
, et al
.
Temporal trends in body composition and metabolic markers prior to diagnosis of pancreatic ductal adenocarcinoma
.
Clin Gastroenterol Hepatol
.
2024
;
22
(
9
):
1830
8.e9
.
34.
Vernucci
E
,
Abrego
J
,
Gunda
V
,
Shukla
SK
,
Dasgupta
A
,
Rai
V
, et al
.
Metabolic alterations in pancreatic cancer progression
.
Cancers
.
2019
;
12
(
1
):
2
.
35.
Sam
S
,
Haffner
S
,
Davidson
MH
,
D'Agostino
RB
,
Feinstein
S
,
Kondos
G
, et al
.
Relation of abdominal fat depots to systemic markers of inflammation in type 2 diabetes
.
Diabetes Care
.
2009
;
32
(
5
):
932
7
.
36.
Srinivasa
S
,
Fitch
KV
,
Torriani
M
,
Zanni
MV
,
Defilippi
C
,
Christenson
R
, et al
.
Relationship of visceral and subcutaneous adipose depots to markers of arterial injury and inflammation among individuals with HIV
.
AIDS
.
2019
;
33
(
2
):
229
36
.
37.
Kang
J
,
Clarke
SE
,
Abdolell
M
,
Ramjeesingh
R
,
Payne
J
,
Costa
AF
.
The implications of missed or misinterpreted cases of pancreatic ductal adenocarcinoma on imaging: a multi-centered population-based study
.
Eur Radiol
.
2021
;
31
(
1
):
212
21
.
38.
Kang
JD
,
Clarke
SE
,
Costa
AF
.
Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma
.
Eur Radiol
.
2021
;
31
(
4
):
2422
32
.
39.
Korfiatis
P
,
Suman
G
,
Patnam
NG
,
Trivedi
KH
,
Karbhari
A
,
Mukherjee
S
, et al
.
Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans
.
Gastroenterology
.
2023
;
165
(
6
):
1533
46.e4
.
40.
Cao
K
,
Xia
Y
,
Yao
J
,
Han
X
,
Lambert
L
,
Zhang
T
, et al
.
Large-scale pancreatic cancer detection via non-contrast CT and deep learning
.
Nat Med
.
2023
;
29
(
12
):
3033
43
.
41.
Chen
P-T
,
Wu
T
,
Wang
P
,
Chang
D
,
Liu
K-L
,
Wu
M-S
, et al
.
Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study
.
Radiology
.
2023
;
306
(
1
):
172
82
.
42.
Liu
K-L
,
Wu
T
,
Chen
P-T
,
Tsai
YM
,
Roth
H
,
Wu
M-S
, et al
.
Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation
.
Lancet Digit Health
.
2020
;
2
(
6
):
e303
13
.
43.
Suman
G
,
Panda
A
,
Korfiatis
P
,
Goenka
AH
.
Convolutional neural network for the detection of pancreatic cancer on CT scans
.
Lancet Digit Health
.
2020
;
2
(
9
):
e453
.
44.
Gu
W
,
Chen
Y
,
Zhu
H
,
Chen
H
,
Yang
Z
,
Mo
S
, et al
.
Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study
.
eClinicalMedicine
.
2023
;
65
:
102269
.
45.
Wei
W
,
Jia
G
,
Wu
Z
,
Wang
T
,
Wang
H
,
Wei
K
, et al
.
A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images
.
Jpn J Radiol
.
2023
;
41
(
4
):
417
27
.
46.
Chu
LC
,
Park
S
,
Kawamoto
S
,
Fouladi
DF
,
Shayesteh
S
,
Zinreich
ES
, et al
.
Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue
.
AJR Am J Roentgenol
.
2019
;
213
(
2
):
349
57
.
47.
Chen
PT
,
Chang
D
,
Yen
H
,
Liu
KL
,
Huang
SY
,
Roth
H
, et al
.
Radiomic features at CT can distinguish pancreatic cancer from noncancerous pancreas
.
Radiol Imaging Cancer
.
2021
;
3
(
4
):
e210010
.
48.
Erratum: radiomic features at CT can distinguish pancreatic cancer from noncancerous pancreas
.
Radiol Imaging Cancer
.
2021
;
3
(
4
):
e219017
.
49.
Qu
J
,
Xiao
X
,
Wei
X
,
Qian
X
.
A causality-inspired generalized model for automated pancreatic cancer diagnosis
.
Med Image Anal
.
2024
;
94
:
103154
.
50.
Qiu
J-J
,
Yin
J
,
Qian
W
,
Liu
J-H
,
Huang
Z-X
,
Yu
H-P
, et al
.
A novel multiresolution-statistical texture analysis architecture: radiomics-aided diagnosis of PDAC based on plain CT images
.
IEEE Trans Med Imaging
.
2021
;
40
(
1
):
12
25
.
51.
Li
X
,
Guo
R
,
Lu
J
,
Chen
T
,
Qian
X
.
Causality-driven graph neural network for early diagnosis of pancreatic cancer in non-contrast computerized tomography
.
IEEE Trans Med Imaging
.
2023
;
42
(
6
):
1656
67
.
52.
Suman
G
,
Patra
A
,
Korfiatis
P
,
Majumder
S
,
Chari
ST
,
Truty
MJ
, et al
.
Quality gaps in public pancreas imaging datasets: implications & challenges for AI applications
.
Pancreatology
.
2021
;
21
(
5
):
1001
8
.
53.
Suman
G
,
Patra
A
,
Mukherjee
S
,
Korffiatis
P
,
Goenka
AH
.
Radiomics for detection of pancreas adenocarcinoma on CT scans: impact of biliary stents
.
Radiol Imaging Cancer
.
2022
;
4
(
1
):
e210081
.
You do not currently have access to this content.