Introduction: Texture analysis can provide quantitative imaging markers and better characterize tumor tissue in oncological imaging. The present analysis investigated the diagnostic benefit of computed tomography (CT)-derived texture analysis to categorize and stage lymph nodes in patients with colon cancer. Methods: In this study, 85 patients were included (n = 39 females, 45.9%) with a mean age of 70.3 ± 14.8 years. All patients were surgically resected, and the lymph nodes were histopathologically analyzed. All investigated lymph nodes were further investigated with texture analysis using the MaZda package. Results: Out of a total of 279 extracted CT texture features, 7 parameters independently showed statistically significant differences between lymph node positive to negative ones. For instance, the texture parameter S(1,0)AngScMom showed statistically significant differences regarding lymph node metastasis status (0.007 ± 0.004 for N0 vs. 0.005 ± 0.001 for N1–2, p = 0.001). A multivariate model was developed based on n = 7 independent texture parameters. The diagnostic accuracy reached an area under the curve of 0.79 (95% CI: 0.69–0.89) with a sensitivity of 0.77 and a specificity of 0.70, resulting in an accuracy of 0.73. Discussion: Texture analysis can improve the diagnostic accuracy for nodal CT staging in patients with colon cancer. Further validation studies are needed to confirm the present results.

1.
Bray
F
,
Laversanne
M
,
Sung
H
,
Ferlay
J
,
Siegel
RL
,
Soerjomataram
I
, et al
.
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2024
;
74
(
3
):
229
63
.
2.
Arnold
M
,
Sierra
MS
,
Laversanne
M
,
Soerjomataram
I
,
Jemal
A
,
Bray
F
.
Global patterns and trends in colorectal cancer incidence and mortality
.
Gut
.
2017
;
66
(
4
):
683
91
.
3.
Cao
W
,
Qin
K
,
Li
F
,
Chen
W
.
Socioeconomic inequalities in cancer incidence and mortality: an analysis of GLOBOCAN 2022
.
Chin Med J
.
2024
;
137
(
12
):
1407
13
.
4.
Ramaboli
MC
,
Ocvirk
S
,
Khan Mirzaei
M
,
Eberhart
BL
,
Valdivia-Garcia
M
,
Metwaly
A
, et al
.
Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer
.
Nat Commun
.
2024
;
15
(
1
):
3379
.
5.
Argilés
G
,
Tabernero
J
,
Labianca
R
,
Hochhauser
D
,
Salazar
R
,
Iveson
T
,
ESMO Guidelines Committee Electronic address clinicalguidelines@esmo org
, et al
.
Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2020
;
31
(
10
):
1291
305
.
6.
Shkurti
J
,
van den Berg
K
,
van Erning
FN
,
Lahaye
MJ
,
Beets-Tan
RGH
,
Nederend
J
.
Diagnostic accuracy of CT for local staging of colon cancer: a nationwide study in The Netherlands
.
Eur J Cancer
.
2023
;
193
:
113314
.
7.
Benson
AB
,
Venook
AP
,
Al-Hawary
MM
,
Arain
MA
,
Chen
YJ
,
Ciombor
KK
, et al
.
Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology
.
J Natl Compr Canc Netw
.
2021
;
19
(
3
):
329
59
.
8.
García Del Álamo Hernández
Y
,
Cano-Valderrama
Ó
,
Cerdán-Santacruz
C
,
Pereira Pérez
F
,
Aldrey Cao
I
,
Núñez Fernández
S
, et al
.
Collaborative group for the study of metachronous peritoneal metastases of pT colon cancer. Diagnostic accuracy of abdominal CT for locally advanced colon tumors: can we really entrust certain decisions to the reliability of CT
.
J Clin Med
.
2023
;
12
(
21
):
6764
.
9.
Bayanati
H
,
E Thornhill
R
,
Souza
CA
,
Sethi-Virmani
V
,
Gupta
A
,
Maziak
D
, et al
.
Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer
.
Eur Radiol
.
2015
;
25
(
2
):
480
7
.
10.
Shin
SY
,
Hong
IK
,
Jo
YS
.
Quantitative computed tomography texture analysis: can it improve diagnostic accuracy to differentiate malignant lymph nodes
.
Cancer Imaging
.
2019
;
19
(
1
):
25
.
11.
Zhai
TT
,
Langendijk
JA
,
van Dijk
LV
,
Halmos
GB
,
Witjes
MJH
,
Oosting
SF
, et al
.
The prognostic value of CT-based image-biomarkers for head and neck cancer patients treated with definitive (chemo-)radiation
.
Oral Oncol
.
2019
;
95
:
178
86
.
12.
Strzelecki
M
,
Szczypiński
P
,
Materka
A
,
Klepaczko
A
.
A software tool for automatic classification and segmentation of 2D/3D medical images
.
Nucl Instr Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip
.
2013
;
702
:
137
40
.
13.
Szczypiński
PM
,
Strzelecki
M
,
Materka
A
,
Klepaczko
A
.
MaZda: a software package for image texture analysis
.
Comput Methods Programs Biomed
.
2009
;
94
(
1
):
66
76
.
14.
Meyer
HJ
,
Leonhardi
J
,
Höhn
AK
,
Pappisch
J
,
Wirtz
H
,
Denecke
T
, et al
.
CT texture analysis of pulmonary neuroendocrine tumors-associations with tumor grading and proliferation
.
J Clin Med
.
2021
;
10
(
23
):
5571
.
15.
Chang
GJ
,
Rodriguez-Bigas
MA
,
Skibber
JM
,
Moyer
VA
.
Lymph node evaluation and survival after curative resection of colon cancer: systematic review
.
J Natl Cancer Inst
.
2007
;
99
(
6
):
433
41
.
16.
Nerad
E
,
Lahaye
MJ
,
Maas
M
,
Nelemans
P
,
Bakers
FC
,
Beets
GL
, et al
.
Diagnostic accuracy of CT for local staging of colon cancer: a systematic review and meta-analysis
.
AJR Am J Roentgenol
.
2016
;
207
(
5
):
984
95
.
17.
Hong
EK
,
Landolfi
F
,
Castagnoli
F
,
Park
SJ
,
Boot
J
,
Van den Berg
J
, et al
.
CT for lymph node staging of Colon cancer: not only size but also location and number of lymph node count
.
Abdom Radiol
.
2021
;
46
(
9
):
4096
105
.
18.
Cheng
Y
,
Yu
Q
,
Meng
W
,
Jiang
W
.
Clinico-radiologic nomogram using multiphase CT to predict lymph node metastasis in colon cancer
.
Mol Imaging Biol
.
2022
;
24
(
5
):
798
806
.
19.
Bedrikovetski
S
,
Zhang
J
,
Seow
W
,
Traeger
L
,
Moore
JW
,
Verjans
J
, et al
.
Deep learning to predict lymph node status on pre-operative staging CT in patients with colon cancer
.
J Med Imaging Radiat Oncol
.
2024
;
68
(
1
):
33
40
.
20.
Mou
A
,
Li
H
,
Chen
XL
,
Fan
YH
,
Pu
H
.
Tumor size measured by multidetector CT in resectable colon cancer: correlation with regional lymph node metastasis and N stage
.
World J Surg Oncol
.
2021
;
19
(
1
):
179
.
21.
Wu
Z
,
Qin
G
,
Zhao
N
,
Jia
H
,
Zheng
X
.
Assessing the adequacy of lymph node yield for different tumor stages of colon cancer by nodal staging scores
.
BMC Cancer
.
2017
;
17
(
1
):
498
.
22.
Eresen
A
,
Li
Y
,
Yang
J
,
Shangguan
J
,
Velichko
Y
,
Yaghmai
V
, et al
.
Preoperative assessment of lymph node metastasis in Colon Cancer patients using machine learning: a pilot study
.
Cancer Imaging
.
2020
;
20
(
1
):
30
.
23.
Bülbül
HM
,
Burakgazi
G
,
Kesimal
U
.
Preoperative assessment of grade, T stage, and lymph node involvement: machine learning-based CT texture analysis in colon cancer
.
Jpn J Radiol
.
2024
;
42
(
3
):
300
7
.
24.
Zhuang
Z
,
Zhang
Y
,
Yang
X
,
Deng
X
,
Wang
Z
.
T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer
.
Abdom Radiol
.
2024
;
49
(
6
):
2008
16
.
25.
Miranda
J
,
Horvat
N
,
Araujo-Filho
JAB
,
Albuquerque
KS
,
Charbel
C
,
Trindade
BMC
, et al
.
The role of radiomics in rectal cancer
.
J Gastrointest Cancer
.
2023
;
54
(
4
):
1158
80
.
26.
Nakao
T
,
Shimada
M
,
Yoshikawa
K
,
Tokunaga
T
,
Nishi
M
,
Kashihara
H
, et al
.
Computed tomography texture analysis for the prediction of lateral pelvic lymph node metastasis of rectal cancer
.
World J Surg Oncol
.
2022
;
20
(
1
):
281
.
27.
Abbaspour
E
,
Karimzadhagh
S
,
Monsef
A
,
Joukar
F
,
Mansour-Ghanaei
F
,
Hassanipour
S
.
Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis
.
Int J Surg
.
2024
;
110
(
6
):
3795
813
.
You do not currently have access to this content.