Background: Alcohol consumption and ethanol in alcoholic beverages are group 1 carcinogens, that is, carcinogenic to humans. However, ethanol itself is neither genotoxic nor mutagenic. Based on unique gene-epidemiologic and gene-biochemical evidence, the first metabolite of ethanol oxidation – acetaldehyde (ACH) – acts as a local carcinogen in the oropharynx. This review is focused on those facts, which highlight the importance of the oropharynx and local ACH in the pathogenesis of alcohol-related oropharyngeal cancer. Summary: The strongest evidence for the local carcinogenicity of ACH in man provides a point mutation in the aldehyde dehydrogenase 2 (ALDH2) gene, which has randomized millions of alcohol consumers to markedly increased ACH exposure via saliva. This novel human cancer model is associated with manifold risk for oropharyngeal cancer and most importantly it is free from confounding factors markedly hampering epidemiological studies on alcohol-related cancer. The oropharynx is an ideal target organ for the cancer risk assessment of ACH. There is substantial epidemiological data on alcohol-related oropharyngeal cancer risk and also on salivary ACH concentrations among major risk groups for oropharyngeal cancer. Normal human saliva does not contain measurable levels of ACH. However, alcohol ingestion results within seconds in a concentration-dependent accumulation of ACH in saliva, which continues for up to 10–15 min after each sip of alcoholic beverage. This instant ACH exposure phase is followed by a long-term phase derived from ethanol diffused back to saliva from blood circulation. Microbes representing normal oral flora play a major role in local ACH formation from ethanol. In ALDH2-deficient subjects excess ACH during the long-term ACH exposure phase is most probably derived from salivary glands. Key Message:ALDH2 gene mutation proves the causal relationship between local ACH exposure via saliva and oropharyngeal cancer and provides new means for the quantitative assessment of local ACH exposure in relation to oropharyngeal cancer risk. Instant ACH formation from ethanol represents approximately 70–100% of total local ACH exposure. Ethanol present in “non-alcoholic” beverages and food forms an epidemiological bias in studies on alcohol-related upper digestive tract cancer. Responses: One should quit smoking, adopt sensible drinking habits, and maintain good oral hygiene. Genetic risk groups could be screened and educated. Consumption of beverages and foodstuffs containing low ethanol levels as well as alcoholic beverages containing high ACH levels should be minimized. To that aim, labelling of alcohol and ACH concentrations of all beverages and foodstuffs should be mandatory.

1.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans
.
Consumption of Alcoholic Beverages, vol. 100E
.
IARC Monogr Eval Carcinog Risks Hum
.
2012
;
•••
:
373
499
.1017-1606
2.
Nuutinen
HU
,
Salaspuro
MP
,
Valle
M
,
Lindros
KO
.
Blood acetaldehyde concentration gradient between hepatic and antecubital venous blood in ethanol-intoxicated alcoholics and controls
.
Eur J Clin Invest
.
1984
Aug
;
14
(
4
):
306
11
.
[PubMed]
0014-2972
3.
Nieminen
MT
,
Salaspuro
M
.
Local Acetaldehyde-An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis
.
Cancers (Basel)
.
2018
Jan
;
10
(
1
):
1
23
.
[PubMed]
2072-6694
4.
Jokelainen
K
,
Matysiak-Budnik
T
,
Mäkisalo
H
,
Höckerstedt
K
,
Salaspuro
M
.
High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets
.
Gut
.
1996
Jul
;
39
(
1
):
100
4
.
[PubMed]
0017-5749
5.
Salaspuro
M
.
Key role of local acetaldehyde in upper GI tract carcinogenesis
.
Best Pract Res Clin Gastroenterol
.
2017
Oct
;
31
(
5
):
491
9
.
[PubMed]
1521-6918
6.
Lachenmeier
DW
,
Salaspuro
M
.
ALDH2-deficiency as genetic epidemiologic and biochemical model for the carcinogenicity of acetaldehyde
.
Regul Toxicol Pharmacol
.
2017
Jun
;
86
:
128
36
.
[PubMed]
0273-2300
7.
Maejima
R
,
Iijima
K
,
Kaihovaara
P
,
Hatta
W
,
Koike
T
,
Imatani
A
, et al.
.
Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration
.
PLoS One
.
2015
Apr
;
10
(
4
):
e0120397
.
[PubMed]
1932-6203
8.
Boccia
S
,
Hashibe
M
,
Gallì
P
,
De Feo
E
,
Asakage
T
,
Hashimoto
T
, et al.
.
Aldehyde dehydrogenase 2 and head and neck cancer: a meta-analysis implementing a Mendelian randomization approach
.
Cancer Epidemiol Biomarkers Prev
.
2009
Jan
;
18
(
1
):
248
54
.
[PubMed]
1055-9965
9.
Matsuo
K
,
Oze
I
,
Hosono
S
,
Ito
H
,
Watanabe
M
,
Ishioka
K
, et al.
.
The aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphism interacts with alcohol drinking in the risk of stomach cancer
.
Carcinogenesis
.
2013
Jul
;
34
(
7
):
1510
5
.
[PubMed]
0143-3334
10.
Dong
YJ
,
Peng
TK
,
Yin
SJ
.
Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth
.
Alcohol
.
1996
May-Jun
;
13
(
3
):
257
62
.
[PubMed]
0741-8329
11.
Pavlova
SI
,
Jin
L
,
Gasparovich
SR
,
Tao
L
.
Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci
.
Microbiology
.
2013
Jul
;
159
(
Pt 7
):
1437
46
.
[PubMed]
0026-2617
12.
Linderborg
K
,
Salaspuro
M
,
Väkeväinen
S
.
A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity
.
Food Chem Toxicol
.
2011
Sep
;
49
(
9
):
2103
6
.
[PubMed]
0278-6915
13.
Helminen
A
,
Väkeväinen
S
,
Salaspuro
M
.
ALDH2 genotype has no effect on salivary acetaldehyde without the presence of ethanol in the systemic circulation
.
PLoS One
.
2013
Sep
;
8
(
9
):
e74418
.
[PubMed]
1932-6203
14.
Homann
N
,
Jousimies-Somer
H
,
Jokelainen
K
,
Heine
R
,
Salaspuro
M
.
High acetaldehyde levels in saliva after ethanol consumption: methodological aspects and pathogenetic implications
.
Carcinogenesis
.
1997
Sep
;
18
(
9
):
1739
43
.
[PubMed]
0143-3334
15.
Väkeväinen
S
,
Tillonen
J
,
Agarwal
DP
,
Srivastava
N
,
Salaspuro
M
.
High salivary acetaldehyde after a moderate dose of alcohol in ALDH2-deficient subjects: strong evidence for the local carcinogenic action of acetaldehyde
.
Alcohol Clin Exp Res
.
2000
Jun
;
24
(
6
):
873
7
.
[PubMed]
0145-6008
16.
Väkeväinen
S
,
Tillonen
J
,
Salaspuro
M
.
4-Methylpyrazole decreases salivary acetaldehyde levels in aldh2-deficient subjects but not in subjects with normal aldh2
.
Alcohol Clin Exp Res
.
2001
Jun
;
25
(
6
):
829
34
.
[PubMed]
0145-6008
17.
Tramacere
I
,
Negri
E
,
Bagnardi
V
,
Garavello
W
,
Rota
M
,
Scotti
L
, et al.
.
A meta-analysis of alcohol drinking and oral and pharyngeal cancers. Part 1: overall results and dose-risk relation
.
Oral Oncol
.
2010
Jul
;
46
(
7
):
497
503
.
[PubMed]
1368-8375
18.
Bagnardi
V
,
Rota
M
,
Botteri
E
,
Tramacere
I
,
Islami
F
,
Fedirko
V
, et al.
.
Light alcohol drinking and cancer: a meta-analysis
.
Ann Oncol
.
2013
Feb
;
24
(
2
):
301
8
.
[PubMed]
0923-7534
19.
Salaspuro
V
,
Salaspuro
M
.
Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva
.
Int J Cancer
.
2004
Sep
;
111
(
4
):
480
3
.
[PubMed]
0020-7136
20.
Tsai
ST
,
Wong
TY
,
Ou
CY
,
Fang
SY
,
Chen
KC
,
Hsiao
JR
, et al.
.
The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer
.
Int J Cancer
.
2014
Nov
;
135
(
10
):
2424
36
.
[PubMed]
0020-7136
21.
Yokoyama
S
,
Takeuchi
K
,
Shibata
Y
,
Kageyama
S
,
Matsumi
R
,
Takeshita
T
, et al.
.
Characterization of oral microbiota and acetaldehyde production
.
J Oral Microbiol
.
2018
Jul
;
10
(
1
):
1492316
.
[PubMed]
2000-2297
22.
Mello
FW
,
Melo
G
,
Pasetto
JJ
,
Silva
CA
,
Warnakulasuriya
S
,
Rivero
ER
.
The synergistic effect of tobacco and alcohol consumption on oral squamous cell carcinoma: a systematic review and meta-analysis
.
Clin Oral Investig
.
2019
Jul
;
23
(
7
):
2849
59
.
[PubMed]
1432-6981
23.
Homann
N
,
Tillonen
J
,
Meurman
JH
,
Rintamäki
H
,
Lindqvist
C
,
Rautio
M
, et al.
.
Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer
.
Carcinogenesis
.
2000
Apr
;
21
(
4
):
663
8
.
[PubMed]
0143-3334
24.
Homann
N
,
Tillonen
J
,
Rintamäki
H
,
Salaspuro
M
,
Lindqvist
C
,
Meurman
JH
.
Poor dental status increases acetaldehyde production from ethanol in saliva: a possible link to increased oral cancer risk among heavy drinkers
.
Oral Oncol
.
2001
Feb
;
37
(
2
):
153
8
.
[PubMed]
1368-8375
25.
Nieminen
MT
,
Novak-Frazer
L
,
Collins
R
,
Dawsey
SP
,
Dawsey
SM
,
Abnet
CC
, et al.
.
Alcohol and acetaldehyde in African fermented milk mursik—a possible etiologic factor for high incidence of esophageal cancer in western Kenya
.
Cancer Epidemiol Biomarkers Prev
.
2013
Jan
;
22
(
1
):
69
75
.
[PubMed]
1055-9965
26.
Park
SW
,
Lee
SJ
,
Sim
YS
,
Choi
JY
,
Park
EY
,
Noh
BS
.
Analysis of ethanol in soy sauce using electronic nose for halal food certification
.
Food Sci Biotechnol
.
2017
Apr
;
26
(
2
):
311
7
.
[PubMed]
1226-7708
27.
Güzel-Seydim
ZB
,
Seydim
AC
,
Greene
AK
,
Bodine
AB
.
Determination of organic acids and volatile flavor substancesr in kefir during fermentation
.
J Food Compos Anal
.
2000
;
13
(
1
):
35
43
. 0889-1575
28.
Jeong
SH
,
Lee
SH
,
Jung
JY
,
Choi
EJ
,
Jeon
CO
.
Microbial succession and metabolite changes during long-term storage of Kimchi
.
J Food Sci
.
2013
May
;
78
(
5
):
M763
9
.
[PubMed]
0022-1147
29.
Augustin
J
,
Augustin
E
,
Cutrufelli
RL
,
Hagen
SR
,
Teitzel
C
.
Alcohol retention in food preparation
.
J Am Diet Assoc
.
1992
Apr
;
92
(
4
):
486
8
.
[PubMed]
0002-8223
You do not currently have access to this content.