Introduction: Among upper urinary tract stones, a significant proportion comprises uric acid stones. The aim of this study was to use machine learning techniques to analyze CT scans and blood and urine test data, with the aim of establishing multiple predictive models that can accurately identify uric acid stones. Methods: We divided 276 patients with upper urinary tract stones into two groups: 48 with uric acid stones and 228 with other types, identified using Fourier-transform infrared spectroscopy. To distinguish the stone types, we created three types of deep learning models and extensively compared their classification performance. Results: Among the three major types of models, considering accuracy, sensitivity, and recall, CLNC-LR, IMG-support vector machine (SVM), and FUS-SVM perform the best. The accuracy and F1 score for the three models were as follows: CLNC-LR (82.14%, 0.7813), IMG-SVM (89.29%, 0.89), and FUS-SVM (29.29%, 0.8818). The area under the curves for classes CLNC-LR, IMG-SVM, and FUS-SVM were 0.97, 0.96, and 0.99, respectively. Conclusion: This study shows the feasibility of utilizing deep learning to assess whether urinary tract stones are uric acid stones through CT scans, blood, and urine tests. It can serve as a supplementary tool for traditional stone composition analysis, offering decision support for urologists and enhancing the effectiveness of diagnosis and treatment.

1.
Song
L
,
Maalouf
NM
.
Nephrolithiasis. 2020 mar 9
. In:
Feingold
KR
,
Anawalt
B
,
Blackman
MR
,
Boyce
A
,
Chrousos
G
,
Corpas
E
, et al
, editors.
Endotext [internet]
.
South Dartmouth (MA)
:
MDText.com, Inc.
;
2000
.
2.
Maalouf
NM
.
Metabolic syndrome and the genesis of uric acid stones
.
J Ren Nutr
.
2011
;
21
(
1
):
128
31
. .
3.
Caramia
G
,
Di Gregorio
L
,
Tarantino
ML
,
Galuffo
A
,
Iacolino
R
,
Caramia
M
, et al
.
Uric acid, phosphate and oxalate stones: treatment and prophylaxis
.
Urol Int
.
2004
;
72
:
24
8
.
4.
Ferraro
PM
,
Gambaro
G
.
Uric acid nephrolithiasis. Giornale italiano di nefrologia: organo ufficiale della Societa italiana di nefrologia
.
2015
;
32
:gin/32.S62.38.
5.
Pavlova
ZP
,
Golodnikov
IG
,
Kamalov
AA
,
Nizov
AN
.
A role of fructose in urinary stone formation
.
Urologiia
.
2019
;
1
:
114
8
. .
6.
Kadlec
AO
,
Greco
K
,
Fridirici
ZC
,
Hart
,
ST
,
Vellos
,
T
,
Turk
,
TM
.
Metabolic syndrome and urinary stone composition: what factors matter most
.
Urology
.
2012
;
80
(
4
):
805
10
, .
7.
Inci
M
,
Demirtas
A
,
Sarli
B
,
Akinsal
,
E
,
Baydilli
,
N
.
Association between body mass index, lipid profiles, and types of urinary stones
.
Ren Fail
.
2012
;
34
(
9
):
1140
3
. .
8.
Kc
M
,
Leslie
SW
.
Uric acid nephrolithiasis [M]
.
Treasure Island (FL)
: StatPearls Publishing Copyright © 2022,
StatPearls Publishing LLC.
,
2022
.
9.
Chan
HP
,
Samala
RK
,
Hadjiiski
LM
,
Zhou
C
.
Deep learning in medical image analysis
.
Adv Exp Med Biol
.
2020
;
1213
:
3
21
. .
10.
Primiano
A
,
Persichilli
S
,
Gambaro
G
,
Ferraro
PM
,
D’Addessi
A
,
Cocci
A
, et al
.
FT-IR analysis of urinary stones: a helpful tool for clinician comparison with the chemical spot test
.
Dis Markers
.
2014
;
2014
:
176165
. .
11.
Fedorov
A
,
Beichel
R
,
Kalpathy-Cramer
J
,
Finet
J
,
Fillion-Robin
J-C
,
Pujol
S
, et al
.
3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic resonance imaging
.
12.
Pedregosa
F
,
Varoquaux
G
,
Gramfort
A
,
Michel
V
,
Thirion
B
,
Grisel
O
, et al
.
Scikit-learn: machine learning in python
;
2012
. arXiv, arXiv preprint arXiv:1201.0490.
13.
Demuth
HB
,
Beale
MH
,
De Jess
O
,
Hagan
MT
.
Neural network design
.
Martin Hagan2014
.
14.
Gridley
CM
,
Sourial
MW
,
Lehman
A
,
Knudsen
BE
.
Medical dissolution therapy for the treatment of uric acid nephrolithiasis
.
World J Urol
.
2019
;
37
(
11
):
2509
15
. .
15.
Siener
R
.
Nutrition and kidney stone disease
.
Nutrients
.
2021
;
13
(
6
):
1917
. .
16.
Ferraro
PM
,
Bargagli
M
,
Trinchieri
A
,
Gambaro
G
.
Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets
.
Nutrients
.
2020
;
12
(
3
):
779
. .
17.
Caglayan
A
,
Horsanali
MO
,
Kocadurdu
K
,
Ismailoglu
E
,
Guneyli
S
.
Deep learning model-assisted detection of kidney stones on computed tomography
.
Int Braz J Urol
.
2022
;
48
(
5
):
830
9
. .
18.
Pearl
J
,
Glymour
M
,
Jewell
NP
.
Causal inference in statistics: a primer
.
Chichester, UK
:
Wiley
;
2016
. p.
136
.
19.
McGrath
TA
,
Frank
RA
,
Schieda
N
,
Blew
B
,
Salameh
JP
,
Bossuyt
PMM
, et al
.
Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis
.
Eur Radiol
.
2020
;
30
(
5
):
2791
801
. .
20.
Jendeberg
J
,
Thunberg
P
,
Popiolek
M
,
Liden
M
.
Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT-prospective validation of a quantitative method
.
Eur Radiol
.
2021
;
31
(
8
):
5980
9
. .
21.
Ratkalkar
VN
,
Kleinman
JG
.
Mechanisms of stone formation
.
Clin Rev Bone Miner Metab
.
2011
;
9
(
3–4
):
187
97
. .
22.
Sorensen
CM
,
Chandhoke
PS
.
Hyperuricosuric calcium nephrolithiasis
.
Endocrinol Metab Clin North Am
.
2002
;
31
(
4
):
915
25
. .
You do not currently have access to this content.