Over the last decade, tremendous progress has been made in the field of adoptive cell therapy. The two prevailing modalities include endogenous non-engineered approaches and genetically engineered T-cell approaches. Endogenous non-engineered approaches include dendritic cell-based systems and tumor-infiltrating lymphocytes (TIL) that are used to produce multi-antigen-specific T-cell products. Genetically engineered approaches, such as T-cell receptor engineered cells and chimeric antigen receptor T cells are used to produce single antigen-specific T-cell products. It is noted by the authors that there are alternative methods to sort for antigen-specific T cells such as peptide multimer sorting or cytokine secretion assay-based sorting, both of which are potentially challenging for broad development and commercialization. In this review, we are focusing on a novel nanoparticle technology that generates a non-engineered product from the endogenous T-cell repertoire. The most common approaches for ex vivo activation and expansion of endogenous, non-genetically engineered cell therapy products rely on dendritic cell-based systems or IL-2 expanded TIL. Hurdles remain in developing efficient, consistent, controlled processes; thus, these processes still have limited access to broad patient populations. Here, we describe a novel approach to produce cellular therapies at clinical scale, using proprietary nanoparticles combined with a proprietary manufacturing process to enrich and expand antigen-specific CD8+ T-cell products with consistent purity, identity, and composition required for effective and durable anti-tumor response.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.