Sequencing of the human genome has led to the definition of the genes for most of the relevant blood group systems, and the polymorphisms responsible for most of the clinically relevant blood group antigens are characterized. Molecular blood group typing is used in situations where erythrocytes are not available or where serological testing was inconclusive or not possible due to the lack of antisera. Also, molecular testing may be more cost-effective in certain situations. Molecular typing approaches are mostly based on either PCR with specific primers, DNA hybridization, or DNA sequencing. Particularly the transition of sequencing techniques from Sanger-based sequencing to next-generation sequencing (NGS) technologies has led to exciting new possibilities in blood group genotyping. We describe briefly the currently available NGS platforms and their specifications, depict the genetic background of blood group polymorphisms, and discuss applications for NGS approaches in immunohematology. As an example, we delineate a protocol for large-scale donor blood group screening established and in use at our institution. Furthermore, we discuss technical challenges and limitations as well as the prospect for future developments, including long-read sequencing technologies.

1.
Heather
JM
,
Chain
B
.
The sequence of sequencers: the history of sequencing DNA
.
Genomics
.
2016
Jan
;
107
(
1
):
1
8
.
[PubMed]
0888-7543
2.
van Dijk
EL
,
Jaszczyszyn
Y
,
Naquin
D
,
Thermes
C
.
The Third Revolution in Sequencing Technology
.
Trends Genet
.
2018
Sep
;
34
(
9
):
666
81
.
[PubMed]
0168-9525
3.
Koboldt
DC
,
Steinberg
KM
,
Larson
DE
,
Wilson
RK
,
Mardis
ER
.
The next-generation sequencing revolution and its impact on genomics
.
Cell
.
2013
Sep
;
155
(
1
):
27
38
.
[PubMed]
0092-8674
4.
Lohmann
K
,
Klein
C
.
Next generation sequencing and the future of genetic diagnosis
.
Neurotherapeutics
.
2014
Oct
;
11
(
4
):
699
707
.
[PubMed]
1933-7213
5.
Lyons
E
,
Sheridan
P
,
Tremmel
G
,
Miyano
S
,
Sugano
S
.
Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens
.
Sci Rep
.
2017
Oct
;
7
(
1
):
13899
.
[PubMed]
2045-2322
6.
Schöfl
G
,
Lang
K
,
Quenzel
P
,
Böhme
I
,
Sauter
J
,
Hofmann
JA
, et al.
2.7 million samples genotyped for HLA by next generation sequencing: lessons learned
.
BMC Genomics
.
2017
Feb
;
18
(
1
):
161
.
[PubMed]
1471-2164
7.
Seltsam
A
,
Doescher
A
.
Sequence-Based Typing of Human Blood Groups
.
Transfus Med Hemother
.
2009
;
36
(
3
):
204
12
.
[PubMed]
1660-3796
8.
Reid
ME
.
Overview of molecular methods in immunohematology
.
Transfusion
.
2007
Jul
;
47
(
1
Suppl
):
10S
6S
.
[PubMed]
0041-1132
9.
Liu
Z
,
Liu
M
,
Mercado
T
,
Illoh
O
,
Davey
R
.
Extended blood group molecular typing and next-generation sequencing
.
Transfus Med Rev
.
2014
Oct
;
28
(
4
):
177
86
.
[PubMed]
0887-7963
10.
Merriman
B
,
Rothberg
JM
;
Ion Torrent R&D Team
.
Progress in ion torrent semiconductor chip based sequencing
.
Electrophoresis
.
2012
Dec
;
33
(
23
):
3397
417
.
[PubMed]
0173-0835
11.
Marinier
E
,
Brown
DG
,
McConkey
BJ
.
Pollux: platform independent error correction of single and mixed genomes
.
BMC Bioinformatics
.
2015
Jan
;
16
(
1
):
10
.
[PubMed]
1471-2105
12.
Ambardar
S
,
Gupta
R
,
Trakroo
D
,
Lal
R
,
Vakhlu
J
.
High Throughput Sequencing: An Overview of Sequencing Chemistry
.
Indian J Microbiol
.
2016
Dec
;
56
(
4
):
394
404
.
[PubMed]
0046-8991
13.
Lane
WJ
,
Westhoff
CM
,
Gleadall
NS
,
Aguad
M
,
Smeland-Wagman
R
,
Vege
S
, et al.;
MedSeq Project
.
Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study
.
Lancet Haematol
.
2018
Jun
;
5
(
6
):
e241
51
.
[PubMed]
2352-3026
14.
Lane
WJ
,
Aguad
M
,
Smeland-Wagman
R
,
Vege
S
,
Mah
HH
,
Joseph
A
, et al.;
MedSeq Project
.
A whole genome approach for discovering the genetic basis of blood group antigens: independent confirmation for P1 and Xga
.
Transfusion
.
2019
Mar
;
59
(
3
):
908
15
.
[PubMed]
0041-1132
15.
Ardui
S
,
Ameur
A
,
Vermeesch
JR
,
Hestand
MS
.
Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics
.
Nucleic Acids Res
.
2018
Mar
;
46
(
5
):
2159
68
.
[PubMed]
0305-1048
16.
Rhoads
A
,
Au
KF
.
PacBio Sequencing and Its Applications
.
Genomics Proteomics Bioinformatics
.
2015
Oct
;
13
(
5
):
278
89
.
[PubMed]
1672-0229
17.
Branton
D
,
Deamer
DW
,
Marziali
A
,
Bayley
H
,
Benner
SA
,
Butler
T
, et al.
The potential and challenges of nanopore sequencing
.
Nat Biotechnol
.
2008
Oct
;
26
(
10
):
1146
53
.
[PubMed]
1087-0156
18.
Jain
M
,
Koren
S
,
Miga
KH
,
Quick
J
,
Rand
AC
,
Sasani
TA
, et al.
Nanopore sequencing and assembly of a human genome with ultra-long reads
.
Nat Biotechnol
.
2018
Apr
;
36
(
4
):
338
45
.
[PubMed]
1087-0156
19.
Jain
M
,
Olsen
HE
,
Paten
B
,
Akeson
M
.
The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
.
Genome Biol
.
2016
Nov
;
17
(
1
):
239
.
[PubMed]
1474-7596
20.
Flusberg
BA
,
Webster
DR
,
Lee
JH
,
Travers
KJ
,
Olivares
EC
,
Clark
TA
, et al.
Direct detection of DNA methylation during single-molecule, real-time sequencing
.
Nat Methods
.
2010
Jun
;
7
(
6
):
461
5
.
[PubMed]
1548-7091
21.
Carapito
R
,
Radosavljevic
M
,
Bahram
S
.
Next-Generation Sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies
.
Hum Immunol
.
2016
Nov
;
77
(
11
):
1016
23
.
[PubMed]
0198-8859
22.
Chin
CS
,
Alexander
DH
,
Marks
P
,
Klammer
AA
,
Drake
J
,
Heiner
C
, et al.
Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
.
Nat Methods
.
2013
Jun
;
10
(
6
):
563
9
.
[PubMed]
1548-7091
23.
Besser
J
,
Carleton
HA
,
Gerner-Smidt
P
,
Lindsey
RL
,
Trees
E
.
Next-generation sequencing technologies and their application to the study and control of bacterial infections
.
Clin Microbiol Infect
.
2018
Apr
;
24
(
4
):
335
41
.
[PubMed]
1198-743X
24.
Mayor
NP
,
Robinson
J
,
McWhinnie
AJ
,
Ranade
S
,
Eng
K
,
Midwinter
W
, et al.
HLA Typing for the Next Generation
.
PLoS One
.
2015
May
;
10
(
5
):
e0127153
.
[PubMed]
1932-6203
25.
Liu
C
,
Xiao
F
,
Hoisington-Lopez
J
,
Lang
K
,
Quenzel
P
,
Duffy
B
, et al.
Accurate Typing of Human Leukocyte Antigen Class I Genes by Oxford Nanopore Sequencing
.
J Mol Diagn
.
2018
Jul
;
20
(
4
):
428
35
.
[PubMed]
1525-1578
26.
Olivès
B
,
Merriman
M
,
Bailly
P
,
Bain
S
,
Barnett
A
,
Todd
J
, et al.
The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility
.
Hum Mol Genet
.
1997
Jul
;
6
(
7
):
1017
20
.
[PubMed]
0964-6906
27.
Yamamoto
F
,
Hakomori
S
.
Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions
.
J Biol Chem
.
1990
Nov
;
265
(
31
):
19257
62
.
[PubMed]
0021-9258
28.
Yamamoto
F
,
Clausen
H
,
White
T
,
Marken
J
,
Hakomori
S
.
Molecular genetic basis of the histo-blood group ABO system
.
Nature
.
1990
May
;
345
(
6272
):
229
33
.
[PubMed]
0028-0836
29.
Matassi
G
,
Chérif-Zahar
B
,
Mouro
I
,
Cartron
JP
.
Characterization of the recombination hot spot involved in the genomic rearrangement leading to the hybrid D-CE-D gene in the D(VI) phenotype
.
Am J Hum Genet
.
1997
Apr
;
60
(
4
):
808
17
.
[PubMed]
0002-9297
30.
Wagner
FF
,
Gassner
C
,
Muller
TH
,
Schonitzer
D
,
Schunter
F
,
Flegel
WA
.
Three molecular structures cause rhesus D category VI phenotypes with distinct immunohematologic features
.
Blood
.
1998
Mar
;
91
(
6
):
2157
68
.
[PubMed]
0006-4971
31.
Tournamille
C
,
Le Van Kim
C
,
Gane
P
,
Cartron
JP
,
Colin
Y
.
Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism
.
Hum Genet
.
1995
Apr
;
95
(
4
):
407
10
.
[PubMed]
0340-6717
32.
Wagner
FF
,
Frohmajer
A
,
Flegel
WA
.
RHD positive haplotypes in D negative Europeans
.
BMC Genet
.
2001
;
2
(
1
):
10
.
[PubMed]
1471-2156
33.
Storry
JR
,
Jöud
M
,
Christophersen
MK
,
Thuresson
B
,
Åkerström
B
,
Sojka
BN
, et al.
Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype
.
Nat Genet
.
2013
May
;
45
(
5
):
537
41
.
[PubMed]
1061-4036
34.
Singleton
BK
,
Green
CA
,
Avent
ND
,
Martin
PG
,
Smart
E
,
Daka
A
, et al.
The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the Rh D-negative blood group phenotype
.
Blood
.
2000
Jan
;
95
(
1
):
12
8
.
[PubMed]
0006-4971
35.
Wagner
FF
,
Flegel
WA
.
RHD gene deletion occurred in the Rhesus box
.
Blood
.
2000
Jun
;
95
(
12
):
3662
8
.
[PubMed]
0006-4971
36.
Daniels
G
.
Gerbich blood group system. Human Blood Groups
. 3rd ed.
Chichester, UK
:
Wiley-Blackwell
;
2013
. pp.
410
26
.
37.
Gourri
E
,
Denomme
GA
,
Merki
Y
,
Scharberg
EA
,
Vrignaud
C
,
Frey
BM
, et al.
Genetic background of the rare Yus and Gerbich blood group phenotypes: homologous regions of the GYPC gene contribute to deletion alleles
.
Br J Haematol
.
2017
May
;
177
(
4
):
630
40
.
[PubMed]
0007-1048
38.
Flegel
WA
,
von Zabern
I
,
Wagner
FF
.
Six years’ experience performing RHD genotyping to confirm D- red blood cell units in Germany for preventing anti-D immunizations
.
Transfusion
.
2009
Mar
;
49
(
3
):
465
71
.
[PubMed]
0041-1132
39.
Murphy
MT
,
Templeton
LJ
,
Fleming
J
,
Ferguson
M
,
Peterkin
M
,
Fraser
RH
.
Comparison of Fy(b) status as determined serologically and genetically
.
Transfus Med
.
1997
Jun
;
7
(
2
):
135
41
.
[PubMed]
0958-7578
40.
Prager
M
.
Molecular genetic blood group typing by the use of PCR-SSP technique
.
Transfusion
.
2007
Jul
;
47
(
1
Suppl
):
54S
9S
.
[PubMed]
0041-1132
41.
Finning
K
,
Bhandari
R
,
Sellers
F
,
Revelli
N
,
Villa
MA
,
Muñiz-Díaz
E
, et al.
Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT/ID HPA XT) in routine clinical practice
.
Blood Transfus
.
2016
Mar
;
14
(
2
):
160
7
.
[PubMed]
2385-2070
42.
Drago
F
,
Karpasitou
K
,
Poli
F
.
Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms
.
Transfus Med Hemother
.
2009
;
36
(
3
):
157
60
.
[PubMed]
1660-3796
43.
Tounsi
WA
,
Madgett
TE
,
Avent
ND
.
Complete RHD next-generation sequencing: establishment of reference RHD alleles
.
Blood Adv
.
2018
Oct
;
2
(
20
):
2713
23
.
[PubMed]
2473-9529
44.
Dezan
MR
,
Ribeiro
IH
,
Oliveira
VB
,
Vieira
JB
,
Gomes
FC
,
Franco
LA
, et al.
RHD and RHCE genotyping by next-generation sequencing is an effective strategy to identify molecular variants within sickle cell disease patients
.
Blood Cells Mol Dis
.
2017
Jun
;
65
:
8
15
.
[PubMed]
1079-9796
45.
Head
SR
,
Komori
HK
,
LaMere
SA
,
Whisenant
T
,
Van Nieuwerburgh
F
,
Salomon
DR
, et al.
Library construction for next-generation sequencing: overviews and challenges
.
Biotechniques
.
2014
Feb
;
56
(
2
):
61
4
.
[PubMed]
0736-6205
46.
Lange
V
,
Böhme
I
,
Hofmann
J
,
Lang
K
,
Sauter
J
,
Schöne
B
, et al.
Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing
.
BMC Genomics
.
2014
Jan
;
15
(
1
):
63
.
[PubMed]
1471-2164
47.
Meny
GM
,
Flickinger
C
,
Marcucci
C
.
The American Rare Donor Program
.
J Crit Care
.
2013
Feb
;
28
(
1
):
110.e9
18
.
[PubMed]
0883-9441
48.
Fichou
Y
,
Audrézet
MP
,
Guéguen
P
,
Le Maréchal
C
,
Férec
C
.
Next-generation sequencing is a credible strategy for blood group genotyping
.
Br J Haematol
.
2014
Nov
;
167
(
4
):
554
62
.
[PubMed]
0007-1048
49.
Boccoz
SA
,
Fouret
J
,
Roche
M
,
Lachuer
J
,
Legras-Lachuer
C
,
Corgier
BP
, et al.
Massively parallel and multiplex blood group genotyping using next-generation-sequencing
.
Clin Biochem
.
2018
Sep
;
60
:
71
6
.
[PubMed]
0009-9120
50.
MacConaill
LE
,
Burns
RT
,
Nag
A
,
Coleman
HA
,
Slevin
MK
,
Giorda
K
, et al.
Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing
.
BMC Genomics
.
2018
Jan
;
19
(
1
):
30
.
[PubMed]
1471-2164
51.
Huber
W
,
Carey
VJ
,
Gentleman
R
,
Anders
S
,
Carlson
M
,
Carvalho
BS
, et al.
Orchestrating high-throughput genomic analysis with Bioconductor
.
Nat Methods
.
2015
Feb
;
12
(
2
):
115
21
.
[PubMed]
1548-7091
52.
Red Cell Immunogenetics and Blood Group Terminology. http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/. Last accessed 30-10-0019. Online Source
53.
Weinstock
C
,
Mytilineos
J
,
Bugert
P
,
Sitzmann
N
,
Pensel
E
,
Schrezenmeier
H
, et al.
A novel allele of the atypical chemokine receptor 1 (ACKR1) gene containing the nucleotide change c.126 T[{GT}]G (p.42Glu) encodes a third Duffy blood group protein sequence antithetical to that encoding Fya and Fyb antigens
.
Transfusion
.
2019
Jun
;
59
(
6
):
2158
9
.
[PubMed]
0041-1132
54.
Brownie
J
,
Shawcross
S
,
Theaker
J
,
Whitcombe
D
,
Ferrie
R
,
Newton
C
, et al.
The elimination of primer-dimer accumulation in PCR
.
Nucleic Acids Res
.
1997
Aug
;
25
(
16
):
3235
41
.
[PubMed]
0305-1048
55.
Peng
Q
,
Vijaya Satya
R
,
Lewis
M
,
Randad
P
,
Wang
Y
.
Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes
.
BMC Genomics
.
2015
Aug
;
16
(
1
):
589
.
[PubMed]
1471-2164
56.
Markoulatos
P
,
Siafakas
N
,
Moncany
M
.
Multiplex polymerase chain reaction: a practical approach
.
J Clin Lab Anal
.
2002
;
16
(
1
):
47
51
.
[PubMed]
0887-8013
57.
Breslauer
KJ
,
Frank
R
,
Blöcker
H
,
Marky
LA
.
Predicting DNA duplex stability from the base sequence
.
Proc Natl Acad Sci USA
.
1986
Jun
;
83
(
11
):
3746
50
.
[PubMed]
0027-8424
58.
Poritz
MA
,
Ririe
KM
.
Getting things backwards to prevent primer dimers
.
J Mol Diagn
.
2014
Mar
;
16
(
2
):
159
62
.
[PubMed]
1525-1578
59.
McDevitt
SL
,
Bredeson
JV
,
Roy
SW
,
Lane
JA
,
Noble
JA
.
HAPCAD: an open-source tool to detect PCR crossovers in next-generation sequencing generated HLA data
.
Hum Immunol
.
2016
Mar
;
77
(
3
):
257
63
.
[PubMed]
0198-8859
60.
Thompson
JR
,
Marcelino
LA
,
Polz
MF
.
Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’
.
Nucleic Acids Res
.
2002
May
;
30
(
9
):
2083
8
.
[PubMed]
0305-1048
61.
Odelberg
SJ
,
Weiss
RB
,
Hata
A
,
White
R
.
Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I
.
Nucleic Acids Res
.
1995
Jun
;
23
(
11
):
2049
57
.
[PubMed]
0305-1048
62.
Chen
SM
,
Ma
KY
,
Zeng
J
.
Pseudogene: lessons from PCR bias, identification and resurrection
.
Mol Biol Rep
.
2011
Aug
;
38
(
6
):
3709
15
.
[PubMed]
0301-4851
63.
Le van Kim
C
,
Mouro
I
,
Chérif-Zahar
B
,
Raynal
V
,
Cherrier
C
,
Cartron
JP
, et al.
Molecular cloning and primary structure of the human blood group RhD polypeptide
.
Proc Natl Acad Sci USA
.
1992
Nov
;
89
(
22
):
10925
9
.
[PubMed]
0027-8424
64.
Kudo
S
,
Fukuda
M
.
Structural organization of glycophorin A and B genes: glycophorin B gene evolved by homologous recombination at Alu repeat sequences
.
Proc Natl Acad Sci USA
.
1989
Jun
;
86
(
12
):
4619
23
.
[PubMed]
0027-8424
65.
Silva
FC
,
Torrezan
GT
,
Brianese
RC
,
Stabellini
R
,
Carraro
DM
.
Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1
.
Mol Genet Genomic Med
.
2017
May
;
5
(
4
):
443
7
.
[PubMed]
2324-9269
66.
Duke
JL
,
Mosbruger
TL
,
Ferriola
D
,
Chitnis
N
,
Hu
T
,
Tairis
N
, et al.
Resolving MiSeq-generated ambiguities in HLA-DPB1 typing by using the Oxford Nanopore technology
.
J Mol Diagn
.
2019
Sep
;
21
(
5
):
852
61
.
[PubMed]
1525-1578
67.
Pollard
MO
,
Gurdasani
D
,
Mentzer
AJ
,
Porter
T
,
Sandhu
MS
.
Long reads: their purpose and place
.
Hum Mol Genet
.
2018
Aug
;
27
R2
:
R234
41
.
[PubMed]
0964-6906
68.
Jeck
WR
,
Lee
J
,
Robinson
H
,
Le
LP
,
Iafrate
AJ
,
Nardi
V
.
A Nanopore Sequencing-Based Assay for Rapid Detection of Gene Fusions
.
J Mol Diagn
.
2019
Jan
;
21
(
1
):
58
69
.
[PubMed]
1525-1578
69.
Nakano
K
,
Shiroma
A
,
Shimoji
M
,
Tamotsu
H
,
Ashimine
N
,
Ohki
S
, et al.
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area
.
Hum Cell
.
2017
Jul
;
30
(
3
):
149
61
.
[PubMed]
0914-7470
70.
Karamitros
T
,
Magiorkinis
G
.
A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits
.
Nucleic Acids Res
.
2015
Dec
;
43
(
22
):
e152
.
[PubMed]
0305-1048
71.
Henley
RY
,
Carson
S
,
Wanunu
M
.
Studies of RNA Sequence and Structure Using Nanopores
.
Prog Mol Biol Transl Sci
.
2016
;
139
:
73
99
.
[PubMed]
1877-1173
72.
Mueller
A
,
Fischer
K
,
Suluku
R
,
Hoenen
T.
Sequencing of mRNA from Whole Blood using Nanopore Sequencing. J Vis Exp
2019
Jun 3;(148).
73.
Hoenen
T
,
Groseth
A
,
Rosenke
K
,
Fischer
RJ
,
Hoenen
A
,
Judson
SD
, et al.
Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool
.
Emerg Infect Dis
.
2016
Feb
;
22
(
2
):
331
4
.
[PubMed]
1080-6040
74.
Park
ST
,
Kim
J
.
Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing
.
Int Neurourol J
.
2016
Nov
;
20
Suppl 2
:
S76
83
.
[PubMed]
2093-4777
75.
Orzińska
A
,
Guz
K
,
Mikula
M
,
Kulecka
M
,
Kluska
A
,
Balabas
A
, et al.
A preliminary evaluation of next-generation sequencing as a screening tool for targeted genotyping of erythrocyte and platelet antigens in blood donors
.
Blood Transfus
.
2018
May
;
16
(
3
):
285
92
.
[PubMed]
2385-2070
76.
Flegel
WA
,
Gottschall
JL
,
Denomme
GA
.
Integration of red cell genotyping into the blood supply chain: a population-based study
.
Lancet Haematol
.
2015
Jul
;
2
(
7
):
e282
9
.
[PubMed]
2352-3026
77.
Jungbauer
C
.
Molecular Bases and Genotyping for Rare Blood Types
.
Transfus Med Hemother
.
2009
;
36
(
3
):
213
8
.
[PubMed]
1660-3796
78.
Salk
JJ
,
Schmitt
MW
,
Loeb
LA
.
Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations
.
Nat Rev Genet
.
2018
May
;
19
(
5
):
269
85
.
[PubMed]
1471-0056
79.
Aloisio
M
,
Licastro
D
,
Caenazzo
L
,
Torboli
V
,
D’Eustacchio
A
,
Severini
GM
, et al.
A technical application of quantitative next generation sequencing for chimerism evaluation
.
Mol Med Rep
.
2016
Oct
;
14
(
4
):
2967
74
.
[PubMed]
1791-2997
80.
Mantere
T
,
Kersten
S
,
Hoischen
A
.
Long-Read Sequencing Emerging in Medical Genetics
.
Front Genet
.
2019
May
;
10
:
426
.
[PubMed]
1664-8021
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.