Since the approval in 2017 and the outstanding success of Kymriah® and Yescarta®, the number of clinical trials investigating the safety and efficacy of chimeric antigen receptor-modified autologous T cells has been constantly rising. Currently, more than 200 clinical trials are listed on clinicaltrial.gov. In contrast to CAR-T cells, natural killer (NK) cells can be used from allogeneic donors as an “off the shelf product” and provide alternative candidates for cancer retargeting. This review summarises preclinical results of CAR-engineered NK cells using both primary human NK cells and the cell line NK-92, and provides an overview about the first clinical CAR-NK cell studies targeting haematological malignancies and solid tumours, respectively.

1.
Koehl
U
,
Kalberer
C
,
Spanholtz
J
,
Lee
DA
,
Miller
JS
,
Cooley
S
, et al.
Advances in clinical NK cell studies: donor selection, manufacturing and quality control
.
OncoImmunology
.
2015
Nov
;
5
(
4
):
e1115178
.
[PubMed]
2162-4011
2.
Mehta
RS
,
Randolph
B
,
Daher
M
,
Rezvani
K
.
NK cell therapy for hematologic malignancies
.
Int J Hematol
.
2018
Mar
;
107
(
3
):
262
70
.
[PubMed]
0925-5710
3.
Abate-Daga
D
,
Davila
ML
.
CAR models: next-generation CAR modifications for enhanced T-cell function
.
Mol Ther Oncolytics
.
2016
May
;
3
:
16014
.
[PubMed]
2372-7705
4.
Hu
Y
,
Tian
ZG
,
Zhang
C
.
Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy
.
Acta Pharmacol Sin
.
2018
Feb
;
39
(
2
):
167
76
.
[PubMed]
1671-4083
5.
Rezvani
K
,
Rouce
RH
.
The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer
.
Front Immunol
.
2015
Nov
;
6
:
578
.
[PubMed]
1664-3224
6.
Zhang
C
,
Oberoi
P
,
Oelsner
S
,
Waldmann
A
,
Lindner
A
,
Tonn
T
, et al.
Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity
.
Front Immunol
.
2017
May
;
8
:
533
.
[PubMed]
1664-3224
7.
Liu
E
,
Tong
Y
,
Dotti
G
,
Shaim
H
,
Savoldo
B
,
Mukherjee
M
, et al.
Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity
.
Leukemia
.
2018
Feb
;
32
(
2
):
520
31
.
[PubMed]
0887-6924
8.
Oei
VY
,
Siernicka
M
,
Graczyk-Jarzynka
A
,
Hoel
HJ
,
Yang
W
,
Palacios
D
, et al.
Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors
.
Cancer Immunol Res
.
2018
Apr
;
6
(
4
):
467
80
.
[PubMed]
2326-6066
9.
Oberschmidt
O
,
Kloess
S
,
Koehl
U
.
Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells As an “Off-the-Shelf Immunotherapy” for Improvement in Cancer Treatment
.
Front Immunol
.
2017
Jun
;
8
:
654
.
[PubMed]
1664-3224
10.
Glienke
W
,
Esser
R
,
Priesner
C
,
Suerth
JD
,
Schambach
A
,
Wels
WS
, et al.
Advantages and applications of CAR-expressing natural killer cells
.
Front Pharmacol
.
2015
Feb
;
6
:
21
.
[PubMed]
1663-9812
11.
Tonn
T
,
Becker
S
,
Esser
R
,
Schwabe
D
,
Seifried
E
.
Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92
.
J Hematother Stem Cell Res
.
2001
Aug
;
10
(
4
):
535
44
.
[PubMed]
1525-8165
12.
Maki
G
,
Klingemann
HG
,
Martinson
JA
,
Tam
YK
.
Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92
.
J Hematother Stem Cell Res
.
2001
Jun
;
10
(
3
):
369
83
.
[PubMed]
1525-8165
13.
Gong
JH
,
Maki
G
,
Klingemann
HG
.
Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells
.
Leukemia
.
1994
Apr
;
8
(
4
):
652
8
.
[PubMed]
0887-6924
14.
Klingemann
HG
,
Wong
E
,
Maki
G
.
A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood
.
Biol Blood Marrow Transplant
.
1996
May
;
2
(
2
):
68
75
.
[PubMed]
1083-8791
15.
Tonn
T
,
Schwabe
D
,
Klingemann
HG
,
Becker
S
,
Esser
R
,
Koehl
U
, et al.
Treatment of patients with advanced cancer with the natural killer cell line NK-92
.
Cytotherapy
.
2013
Dec
;
15
(
12
):
1563
70
.
[PubMed]
1465-3249
16.
Mehta
RS
,
Rezvani
K
.
Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer
.
Front Immunol
.
2018
Feb
;
9
:
283
.
[PubMed]
1664-3224
17.
Maude
SL
,
Laetsch
TW
,
Buechner
J
,
Rives
S
,
Boyer
M
,
Bittencourt
H
, et al.
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia
.
N Engl J Med
.
2018
Feb
;
378
(
5
):
439
48
.
[PubMed]
0028-4793
18.
Romanski
A
,
Uherek
C
,
Bug
G
,
Muller
T
,
Rossig
C
,
Kampfmann
M
, et al.
Re-Targeting of an NK Cell Line (NK92) with Specificity for CD19 Efficiently Kills Human B-Precursor Leukemia Cells
.
Blood
.
2004
;
104
:
2747
. Available from: http://www.bloodjournal.org/content/104/11/27470006-4971
19.
Romanski
A
,
Uherek
C
,
Bug
G
,
Seifried
E
,
Klingemann
H
,
Wels
WS
, et al.
CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies
.
J Cell Mol Med
.
2016
Jul
;
20
(
7
):
1287
94
.
[PubMed]
1582-1838
20.
Kalos
M
,
Levine
BL
,
Porter
DL
,
Katz
S
,
Grupp
SA
,
Bagg
A
, et al.
T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
.
Sci Transl Med
.
2011
Aug
;
3
(
95
):
95ra73
.
[PubMed]
1946-6234
21.
Milone
MC
,
O’Doherty
U
.
Clinical use of lentiviral vectors
.
Leukemia
.
2018
Jul
;
32
(
7
):
1529
41
.
[PubMed]
0887-6924
22.
Suerth
JD
,
Morgan
MA
,
Kloess
S
,
Heckl
D
,
Neudörfl
C
,
Falk
CS
, et al.
Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors
.
J Mol Med (Berl)
.
2016
Jan
;
94
(
1
):
83
93
.
[PubMed]
0946-2716
23.
Olbrich
H
,
Slabik
C
,
Stripecke
R
.
Reconstructing the immune system with lentiviral vectors
.
Virus Genes
.
2017
Oct
;
53
(
5
):
723
32
.
[PubMed]
0920-8569
24.
Mitchell
RS
,
Beitzel
BF
,
Schroder
AR
,
Shinn
P
,
Chen
H
,
Berry
CC
, et al.
Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences
.
PLoS Biol
.
2004
Aug
;
2
(
8
):
E234
.
[PubMed]
1544-9173
25.
Suerth
JD
,
Maetzig
T
,
Galla
M
,
Baum
C
,
Schambach
A
.
Self-inactivating alpharetroviral vectors with a split-packaging design
.
J Virol
.
2010
Jul
;
84
(
13
):
6626
35
.
[PubMed]
0022-538X
26.
Suerth
JD
,
Maetzig
T
,
Brugman
MH
,
Heinz
N
,
Appelt
JU
,
Kaufmann
KB
, et al.
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity
.
Mol Ther
.
2012
May
;
20
(
5
):
1022
32
.
[PubMed]
1525-0016
27.
Boissel
L
,
Betancur-Boissel
M
,
Lu
W
,
Krause
DS
,
Van Etten
RA
,
Wels
WS
, et al.
Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity
.
OncoImmunology
.
2013
Oct
;
2
(
10
):
e26527
.
[PubMed]
2162-4011
28.
Chu
Y
,
Yahr
A
,
Huang
B
,
Ayello
J
,
Barth
M
,
S Cairo
M
.
Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphoma in vitro and in immunodeficient mice
.
OncoImmunology
.
2017
Jun
;
6
(
9
):
e1341031
.
[PubMed]
2162-4011
29.
Coustan-Smith
E
,
Mullighan
CG
,
Onciu
M
,
Behm
FG
,
Raimondi
SC
,
Pei
D
, et al.
Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia
.
Lancet Oncol
.
2009
Feb
;
10
(
2
):
147
56
.
[PubMed]
1470-2045
30.
Gomes-Silva
D
,
Srinivasan
M
,
Sharma
S
,
Lee
CM
,
Wagner
DL
,
Davis
TH
, et al.
CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies
.
Blood
.
2017
Jul
;
130
(
3
):
285
96
.
[PubMed]
0006-4971
31.
Gomes-Silva
D
,
Tashiro
H
,
Srinivasan
M
,
Lulla
P
,
Brenner
MK
,
Mamonkin
M
.
Chimeric Antigen Receptor (CAR) T Cell Therapy for CD7-Positive Acute Myeloid Leukemia
.
Blood
.
2017
;
130
:
2642
.0006-4971
32.
Png
YT
,
Vinanica
N
,
Kamiya
T
,
Shimasaki
N
,
Coustan-Smith
E
,
Campana
D
.
Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies
.
Blood Adv
.
2017
Nov
;
1
(
25
):
2348
60
.
[PubMed]
2473-9529
33.
Raikar
SS
,
Fleischer
LC
,
Moot
R
,
Fedanov
A
,
Paik
NY
,
Knight
KA
, et al.
Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines
.
OncoImmunology
.
2017
Dec
;
7
(
3
):
e1407898
.
[PubMed]
2162-4011
34.
Chen
KH
,
Wada
M
,
Pinz
KG
,
Liu
H
,
Lin
KW
,
Jares
A
, et al.
Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor
.
Leukemia
.
2017
Oct
;
31
(
10
):
2151
60
.
[PubMed]
0887-6924
35.
Chen
KH
,
Wada
M
,
Firor
AE
,
Pinz
KG
,
Jares
A
,
Liu
H
, et al.
Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies
.
Oncotarget
.
2016
Aug
;
7
(
35
):
56219
32
.
[PubMed]
1949-2553
36.
U.S. Food and Drug Administration
.
FDA approves Mylotarg for treatment of acute myeloid leukemia.
FDA News Release, U.S. Food and Drug Administration,
2017
. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574507.htm (accessed June 6, 2018).
37.
Scheinberg
DA
,
Lovett
D
,
Divgi
CR
,
Graham
MC
,
Berman
E
,
Pentlow
K
, et al.
A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide
.
J Clin Oncol
.
1991
Mar
;
9
(
3
):
478
90
.
[PubMed]
0732-183X
38.
Walter
RB
,
Raden
BW
,
Zeng
R
,
Häusermann
P
,
Bernstein
ID
,
Cooper
JA
.
ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2
.
J Leukoc Biol
.
2008
Jan
;
83
(
1
):
200
11
.
[PubMed]
0741-5400
39.
Godwin
CD
,
Gale
RP
,
Walter
RB
.
Gemtuzumab ozogamicin in acute myeloid leukemia
.
Leukemia
.
2017
Sep
;
31
(
9
):
1855
68
.
[PubMed]
0887-6924
40.
Walter
RB
.
Investigational CD33-targeted therapeutics for acute myeloid leukemia
.
Expert Opin Investig Drugs
.
2018
Apr
;
27
(
4
):
339
48
.
[PubMed]
1354-3784
41.
Kenderian
SS
,
Ruella
M
,
Shestova
O
,
Klichinsky
M
,
Aikawa
V
,
Morrissette
JJ
, et al.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
Aug
;
29
(
8
):
1637
47
.
[PubMed]
0887-6924
42.
Li
S
,
Tao
Z
,
Xu
Y
,
Liu
J
,
An
N
,
Wang
Y
, et al.
CD33-Specific Chimeric Antigen Receptor T Cells with Different Co-Stimulators Showed Potent Anti-Leukemia Efficacy and Different Phenotype
.
Hum Gene Ther
.
2018
May
;
29
(
5
):
626
39
.
[PubMed]
1043-0342
43.
Rafiq
S
,
Purdon
TJ
,
Schultz
L
,
Klingemann
H
,
Brentjens
RJ
.
NK-92 cells engineered with anti-CD33 chimeric antigen receptors (CAR) for the treatment of Acute Myeloid Leukemia (AML)
.
Cytotherapy
.
2015
;
17
(
6
):
S23
. 1465-3249
44.
Przespolewski
A
,
Szeles
A
,
Wang
ES
.
Advances in immunotherapy for acute myeloid leukemia
.
Future Oncol
.
2018
Apr
;
14
(
10
):
963
78
.
[PubMed]
1479-6694
45.
Suck
G
,
Linn
YC
,
Tonn
T
.
Natural Killer Cells for Therapy of Leukemia
.
Transfus Med Hemother
.
2016
Mar
;
43
(
2
):
89
95
.
[PubMed]
1660-3796
46.
Taussig
DC
,
Pearce
DJ
,
Simpson
C
,
Rohatiner
AZ
,
Lister
TA
,
Kelly
G
, et al.
Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia
.
Blood
.
2005
Dec
;
106
(
13
):
4086
92
.
[PubMed]
0006-4971
47.
Muñoz
L
,
Nomdedéu
JF
,
López
O
,
Carnicer
MJ
,
Bellido
M
,
Aventín
A
, et al.
Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies
.
Haematologica
.
2001
Dec
;
86
(
12
):
1261
9
.
[PubMed]
0390-6078
48.
Tasian
SK
,
Kenderian
SS
,
Shen
F
,
Ruella
M
,
Shestova
O
,
Kozlowski
M
, et al.
Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia
.
Blood
.
2017
Apr
;
129
(
17
):
2395
407
.
[PubMed]
0006-4971
49.
Gill
S
,
Tasian
SK
,
Ruella
M
,
Shestova
O
,
Li
Y
,
Porter
DL
, et al.
Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells
.
Blood
.
2014
Apr
;
123
(
15
):
2343
54
.
[PubMed]
0006-4971
50.
Klöß
S
,
Oberschmidt
O
,
Morgan
M
,
Dahlke
J
,
Arseniev
L
,
Huppert
V
, et al.
Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells
.
Hum Gene Ther
.
2017
Oct
;
28
(
10
):
897
913
.
[PubMed]
1043-0342
51.
Jurisic
V
,
Srdic
T
,
Konjevic
G
,
Markovic
O
,
Colovic
M
.
Clinical stage-depending decrease of NK cell activity in multiple myeloma patients
.
Med Oncol
.
2007
;
24
(
3
):
312
7
.
[PubMed]
1357-0560
52.
Bernal
M
,
Garrido
P
,
Jiménez
P
,
Carretero
R
,
Almagro
M
,
López
P
, et al.
Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells
.
Hum Immunol
.
2009
Oct
;
70
(
10
):
854
7
.
[PubMed]
0198-8859
53.
Costello
RT
,
Boehrer
A
,
Sanchez
C
,
Mercier
D
,
Baier
C
,
Le Treut
T
, et al.
Differential expression of natural killer cell activating receptors in blood versus bone marrow in patients with monoclonal gammopathy
.
Immunology
.
2013
Jul
;
139
(
3
):
338
41
.
[PubMed]
0019-2805
54.
Maki
G
,
Hayes
GM
,
Naji
A
,
Tyler
T
,
Carosella
ED
,
Rouas-Freiss
N
, et al.
NK resistance of tumor cells from multiple myeloma and chronic lymphocytic leukemia patients: implication of HLA-G
.
Leukemia
.
2008
May
;
22
(
5
):
998
1006
.
[PubMed]
0887-6924
55.
Pittari
G
,
Vago
L
,
Festuccia
M
,
Bonini
C
,
Mudawi
D
,
Giaccone
L
, et al.
Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs
.
Front Immunol
.
2017
Nov
;
8
:
1444
.
[PubMed]
1664-3224
56.
Williams
BA
,
Law
AD
,
Routy
B
,
denHollander
N
,
Gupta
V
,
Wang
XH
, et al.
A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy
.
Oncotarget
.
2017
Jul
;
8
(
51
):
89256
68
.
[PubMed]
1949-2553
57.
Chu
J
,
Deng
Y
,
Benson
DM
,
He
S
,
Hughes
T
,
Zhang
J
, et al.
CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma
.
Leukemia
.
2014
Apr
;
28
(
4
):
917
27
.
[PubMed]
0887-6924
58.
Jiang
H
,
Zhang
W
,
Shang
P
,
Zhang
H
,
Fu
W
,
Ye
F
, et al.
Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells
.
Mol Oncol
.
2014
Mar
;
8
(
2
):
297
310
.
[PubMed]
1574-7891
59.
Lutz
RJ
,
Whiteman
KR
.
Antibody-maytansinoid conjugates for the treatment of myeloma
.
MAbs
.
2009
Nov-Dec
;
1
(
6
):
548
51
.
[PubMed]
1942-0862
60.
Tai
YT
,
Dillon
M
,
Song
W
,
Leiba
M
,
Li
XF
,
Burger
P
, et al.
Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu
.
Blood
.
2008
Aug
;
112
(
4
):
1329
37
.
[PubMed]
0006-4971
61.
Einsele
H
,
Schreder
M
.
Treatment of multiple myeloma with the immunostimulatory SLAMF7 antibody elotuzumab
.
Ther Adv Hematol
.
2016
Oct
;
7
(
5
):
288
301
.
[PubMed]
2040-6207
62.
Gogishvili T, Danhof S, Prommersberger S, Rydzek J, Schreder M, Brede C, Einsele H, Hudecek M. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood 2017;130:2838–2847.
63.
Wang
Y
,
Zhang
Y
,
Bnson
D
,
Caligiuri
M
,
Yu
J
.
Abstract 4617: daratumumab combined with CD38(-) natural killer cells armed with a CS1 chimeric antigen receptor for the treatment of relapsed multiple myeloma
.
Cancer Res
.
2017
;
77
13 Supplement
:
4617
. 0008-5472
64.
Caruso
HG
,
Hurton
LV
,
Najjar
A
,
Rushworth
D
,
Ang
S
,
Olivares
S
, et al.
Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity
.
Cancer Res
.
2015
Sep
;
75
(
17
):
3505
18
.
[PubMed]
0008-5472
65.
Visvader JE. Cells of origin in cancer. Nature. 2011;469:314.
66.
Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics. 2016;3:16006.
67.
Schmidts A, Maus MV. Making CAR T cells a solid option for solid tumors. Front Immunol 2018;9:2593.
68.
Kailayangiri
S
,
Altvater
B
,
Meltzer
J
,
Pscherer
S
,
Luecke
A
,
Dierkes
C
, et al.
The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting
.
Br J Cancer
.
2012
Mar
;
106
(
6
):
1123
33
.
[PubMed]
0007-0920
69.
Esser
R
,
Müller
T
,
Stefes
D
,
Kloess
S
,
Seidel
D
,
Gillies
SD
, et al.
NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin
.
J Cell Mol Med
.
2012
Mar
;
16
(
3
):
569
81
.
[PubMed]
1582-1838
70.
Kailayangiri
S
,
Altvater
B
,
Spurny
C
,
Jamitzky
S
,
Schelhaas
S
,
Jacobs
AH
, et al.
Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G
.
OncoImmunology
.
2016
Oct
;
6
(
1
):
e1250050
.
[PubMed]
2162-4011
71.
Spurny
C
,
Kailayangiri
S
,
Altvater
B
,
Jamitzky
S
,
Hartmann
W
,
Wardelmann
E
, et al.
T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G
.
Oncotarget
.
2017
Dec
;
9
(
5
):
6536
49
.
[PubMed]
1949-2553
72.
Töpfer
K
,
Cartellieri
M
,
Michen
S
,
Wiedemuth
R
,
Müller
N
,
Lindemann
D
, et al.
DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy
.
J Immunol
.
2015
Apr
;
194
(
7
):
3201
12
.
[PubMed]
0022-1767
73.
Reiter
RE
,
Gu
Z
,
Watabe
T
,
Thomas
G
,
Szigeti
K
,
Davis
E
, et al.
Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer
.
Proc Natl Acad Sci USA
.
1998
Feb
;
95
(
4
):
1735
40
.
[PubMed]
0027-8424
74.
Lam
JS
,
Yamashiro
J
,
Shintaku
IP
,
Vessella
RL
,
Jenkins
RB
,
Horvath
S
, et al.
Prostate stem cell antigen is overexpressed in prostate cancer metastases
.
Clin Cancer Res
.
2005
Apr
;
11
(
7
):
2591
6
.
[PubMed]
1078-0432
75.
Campbell
KS
,
Colonna
M
.
DAP12: a key accessory protein for relaying signals by natural killer cell receptors
.
Int J Biochem Cell Biol
.
1999
Jun
;
31
(
6
):
631
6
.
[PubMed]
1357-2725
76.
Lanier
LL
,
Corliss
B
,
Wu
J
,
Phillips
JH
.
Association of DAP12 with activating CD94/NKG2C NK cell receptors
.
Immunity
.
1998
Jun
;
8
(
6
):
693
701
.
[PubMed]
1074-7613
77.
Campbell
KS
,
Yusa
S
,
Kikuchi-Maki
A
,
Catina
TL
.
NKp44 triggers NK cell activation through DAP12 association that is not influenced by a putative cytoplasmic inhibitory sequence
.
J Immunol
.
2004
Jan
;
172
(
2
):
899
906
.
[PubMed]
0022-1767
78.
Hershkovitz
O
,
Jivov
S
,
Bloushtain
N
,
Zilka
A
,
Landau
G
,
Bar-Ilan
A
, et al.
Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44
.
Biochemistry
.
2007
Jun
;
46
(
25
):
7426
36
.
[PubMed]
0006-2960
79.
Gumá
M
,
Angulo
A
,
López-Botet
M
.
NK cell receptors involved in the response to human cytomegalovirus infection
.
Curr Top Microbiol Immunol
.
2006
;
298
:
207
23
.
[PubMed]
0070-217X
80.
Gumá
M
,
Angulo
A
,
Vilches
C
,
Gómez-Lozano
N
,
Malats
N
,
López-Botet
M
.
Imprint of human cytomegalovirus infection on the NK cell receptor repertoire
.
Blood
.
2004
Dec
;
104
(
12
):
3664
71
.
[PubMed]
0006-4971
81.
Gumá
M
,
Budt
M
,
Sáez
A
,
Brckalo
T
,
Hengel
H
,
Angulo
A
, et al.
Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts
.
Blood
.
2006
May
;
107
(
9
):
3624
31
.
[PubMed]
0006-4971
82.
Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–133.
83.
Bauer
S
,
Groh
V
,
Wu
J
,
Steinle
A
,
Phillips
JH
,
Lanier
LL
, et al.
Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA
.
Science
.
1999
Jul
;
285
(
5428
):
727
9
.
[PubMed]
0036-8075
84.
Kloess
S
,
Huenecke
S
,
Piechulek
D
,
Esser
R
,
Koch
J
,
Brehm
C
, et al.
IL-2-activated haploidentical NK cells restore NKG2D-mediated NK-cell cytotoxicity in neuroblastoma patients by scavenging of plasma MICA
.
Eur J Immunol
.
2010
Nov
;
40
(
11
):
3255
67
.
[PubMed]
0014-2980
85.
Giannattasio
A
,
Weil
S
,
Kloess
S
,
Ansari
N
,
Stelzer
EH
,
Cerwenka
A
, et al.
Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids
.
BMC Cancer
.
2015
May
;
15
(
1
):
351
.
[PubMed]
1471-2407
86.
Klöss
S
,
Chambron
N
,
Gardlowski
T
,
Weil
S
,
Koch
J
,
Esser
R
, et al.
Cetuximab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroids
.
Front Immunol
.
2015
Nov
;
6
:
543
.
[PubMed]
1664-3224
87.
Klöß
S
,
Chambron
N
,
Gardlowski
T
,
Arseniev
L
,
Koch
J
,
Esser
R
, et al.
Increased sMICA and TGFβ1 levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells
.
OncoImmunology
.
2015
May
;
4
(
11
):
e1055993
.
[PubMed]
2162-4011
88.
Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999 Jul;285(5428):730–2.
89.
Upshaw
JL
,
Arneson
LN
,
Schoon
RA
,
Dick
CJ
,
Billadeau
DD
,
Leibson
PJ
.
NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells
.
Nat Immunol
.
2006
May
;
7
(
5
):
524
32
.
[PubMed]
1529-2908
90.
Chang
YH
,
Connolly
J
,
Shimasaki
N
,
Mimura
K
,
Kono
K
,
Campana
D
.
A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells
.
Cancer Res
.
2013
Mar
;
73
(
6
):
1777
86
.
[PubMed]
0008-5472
91.
Chen
X
,
Han
J
,
Chu
J
,
Zhang
L
,
Zhang
J
,
Chen
C
, et al.
A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases
.
Oncotarget
.
2016
May
;
7
(
19
):
27764
77
.
[PubMed]
1949-2553
92.
Del Zotto
G
,
Marcenaro
E
,
Vacca
P
,
Sivori
S
,
Pende
D
,
Della Chiesa
M
, et al.
Markers and function of human NK cells in normal and pathological conditions
.
Cytometry B Clin Cytom
.
2017
Mar
;
92
(
2
):
100
14
.
[PubMed]
1552-4949
93.
Schönfeld
K
,
Sahm
C
,
Zhang
C
,
Naundorf
S
,
Brendel
C
,
Odendahl
M
, et al.
Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor
.
Mol Ther
.
2015
Feb
;
23
(
2
):
330
8
.
[PubMed]
1525-0016
94.
Matsuo
Y
,
Drexler
HG
.
Immunoprofiling of cell lines derived from natural killer-cell and natural killer-like T-cell leukemia-lymphoma
.
Leuk Res
.
2003
Oct
;
27
(
10
):
935
45
.
[PubMed]
0145-2126
95.
Jochems
C
,
Hodge
JW
,
Fantini
M
,
Fujii
R
,
Morillon
YM
 2nd
,
Greiner
JW
, et al.
An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele
.
Oncotarget
.
2016
Dec
;
7
(
52
):
86359
73
.
[PubMed]
1949-2553
96.
Klingemann
H
,
Boissel
L
,
Toneguzzo
F
.
Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells
.
Front Immunol
.
2016
Mar
;
7
:
91
.
[PubMed]
1664-3224
97.
Cooley
S
,
Xiao
F
,
Pitt
M
,
Gleason
M
,
McCullar
V
,
Bergemann
TL
, et al.
A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature
.
Blood
.
2007
Jul
;
110
(
2
):
578
86
.
[PubMed]
0006-4971
98.
Faure
M
,
Long
EO
.
KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential
.
J Immunol
.
2002
Jun
;
168
(
12
):
6208
14
.
[PubMed]
0022-1767
99.
Suck
G
,
Odendahl
M
,
Nowakowska
P
,
Seidl
C
,
Wels
WS
,
Klingemann
HG
, et al.
NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy
.
Cancer Immunol Immunother
.
2016
Apr
;
65
(
4
):
485
92
.
[PubMed]
0340-7004
100.
Boissel
L
,
Betancur
M
,
Wels
WS
,
Tuncer
H
,
Klingemann
H
.
Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells
.
Leuk Res
.
2009
Sep
;
33
(
9
):
1255
9
.
[PubMed]
0145-2126
101.
Uherek
C
,
Tonn
T
,
Uherek
B
,
Becker
S
,
Schnierle
B
,
Klingemann
HG
, et al.
Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction
.
Blood
.
2002
Aug
;
100
(
4
):
1265
73
.
[PubMed]
0006-4971
102.
Walseng
E
,
Köksal
H
,
Sektioglu
IM
,
Fåne
A
,
Skorstad
G
,
Kvalheim
G
, et al.
A TCR-based Chimeric Antigen Receptor
.
Sci Rep
.
2017
Sep
;
7
(
1
):
10713
.
[PubMed]
2045-2322
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.