Considerable research efforts have been dedicated to understanding ovarian and breast cancer mechanisms, but there has been little progress translating the research into effective clinical applications. Hence, personalized/precision medicine has emerged because of its potential to improve the accuracy of tumor targeting and minimize toxicity to normal tissue. Targeted therapy in both breast and ovarian cancer has focused on antibodies, antibody drug conjugates (ADCs), and very recently the introduction of human antibody fusion proteins. Small molecule inhibitors and monoclonal antibodies (mAbs) are used in conjunction with chemotherapeutic drugs as a form of treatment but problems arise from a board expression of the target antigen in healthy tissues. Also, insufficient tumor penetration due to tight binding affinity and macromolecular size of mAbs compromise the efficacy of these ADCs. A more targeted approach is thus needed, and ADCs were designed to meet this need. However, in ADCs the method of conjugation of drug to antibody is >1, altering the structure of the drug which leads to off-target effects. Random conjugation also causes the drug to affect the pharmokinetics and biodistribution of the antibody and may cause nonspecific binding and internalization. Recombinant therapeutic proteins achieve controlled conjugation reactions and combine cytotoxicity and targeting in one molecule. They can also be engineered to extend half-life, stability and mechanism of action, and offer novel delivery routes. SNAP-tag fusion proteins are an example of a theranostic recombinant protein as they provide a unique antibody format to conjugate a variety of benzyl guanine modified labels, e.g. fluorophores and photosensitizers in a 1:1 stoichiometry. On the one hand, SNAP tag fusions can be used to optically image tumors when conjugated to a fluorophore, and on the other hand the recombinant proteins can induce necrosis/apoptosis in the tumor when conjugated to a photosensitizer upon exposure to a changeable wavelength of light. The dual nature of SNAP-tag fusions as both a diagnostic and therapeutic tool reinforces its significant role in cancer treatment in an era of precision medicine.

1.
Çelik A, Acar M, Erkul CM, Gunduz E, Gunduz M: Relationship of breast cancer with ovarian cancer; in Gunduz M (ed): A Concise Review of Molecular Pathology of Breast Cancer: InTech, Rijeka, 2015. www.intechopen.com/books/a-concise-review-of-molecular- pathology-of-breast-cancer/relationship-of-breast-cancer-with-ovarian-cancer (last accessed August 22, 2017).
2.
Permuth-Wey J, Sellers TA: Epidemiology of ovarian cancer. Methods Mol Biol 2009;472:413-437.
3.
de Leon MP: Oncogenes and tumor suppressor genes; in Familial and Hereditary Tumors. Heidelberg, Springer, 1994. pp 35-47.
4.
Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707.
5.
van der Groep P, van der Wall E, van Diest PJ: Pathology of hereditary breast cancer. Cell Oncol 2011;34:71-88.
6.
Parise CA, Caggiano V: Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J Cancer Epidemiol 2014;2014:469251.
7.
Green A, Powe D, Rakha E, Soria D, Lemetre C, Nolan C, Barros F, Macmillan R, Garibaldi J, Ball G: Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers. Br J Cancer 2013;109:1886-1894.
8.
Wahba HA, El-Hadaad HA: Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 2015;12:106-116.
9.
Kurman RJ, Shih I-M: The Origin and pathogenesis of epithelial ovarian cancer-a proposed unifying theory. Am J Surg Pathol 2010;34:433-443.
10.
Nogales FF, Dulcey I, Preda O: Germ cell tumors of the ovary: an update. Arch Pathol Lab Med 2014;138:351-362.
11.
Haroon S, Zia A, Idrees R, Memon A, Fatima S, Kayani N: Clinicopathological spectrum of ovarian sex cord-stromal tumors; 20 years' retrospective study in a developing country. J Ovarian Res 2013;6:87.
12.
Szender JB, Papanicolau-Sengos A, Eng KH, Miliotto AJ, Lugade AA, Gnjatic S, Matsuzaki J, Morrison CD, Odunsi K: NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol Oncol 2017;145:420-425.
13.
Kloudová K, Hromádková H, Partlová S, Brtnický T, Rob L, Bartůňková J, Hensler M, Halaška MJ, Špíšek R, Fialová A: Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines. Oncotarget 2016;7:46120.
14.
Munagala R, Aqil F, Gupta RC: Promising molecular targeted therapies in breast cancer. Indian J Pharmacol 2011;43:236.
15.
Fiszman GL, Jasnis MA: Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. Int J Breast Cancer 2011;2011:352182.
16.
Spector N, Xia W, El-Hariry I, Yarden Y, Bacus S: HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors. Breast Cancer Res 2007;9:205.
17.
Alvarez RH, Valero V, Hortobagyi GN: Emerging targeted therapies for breast cancer. J Clin Oncol 2010;28:3366-3379.
18.
Ferrara N: Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004;9(suppl 1):2-10.
19.
Buchbinder EI, Desai A: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016;39:98-106.
20.
Meehan RS, Chen AP: New treatment option for ovarian cancer: PARP inhibitors. Gynecol Oncol Res Pract 2016;3:3.
21.
Papa A, Caruso D, Strudel M, Tomao S, Tomao F: Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treatment. J Translat Med 2016;14:267.
22.
Konecny G, Kristeleit R: PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer 2016;115:1157-1173.
23.
Zhao L, Ren T-H, Wang DD: Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin 2012;33:1339-1347.
24.
Chames P, Van Regenmortel M, Weiss E, Baty D: Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009;157:220-233.
25.
Fujimori K, Covell DG, Fletcher JE, Weinstein JN: A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990;31:1191-1198.
26.
Strome SE, Sausville EA, Mann D: A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 2007;12:1084-1095.
27.
Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM: High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001;61:4750-4755.
28.
Beckman RA, Weiner LM, Davis HM: Antibody constructs in cancer therapy. Cancer 2007;109:170-179.
29.
Young PA, Morrison SL, Timmerman JM: Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 2014;41:623-636.
30.
Diamantis N, Banerji U: Antibody-drug conjugates - an emerging class of cancer treatment. B J Cancer 2016;114:362-367.
31.
Lu J, Jiang F, Lu A, Zhang G: Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci 2016;17:561.
32.
Chudasama V, Maruani A, Caddick S: Recent advances in the construction of antibody-drug conjugates. Nat Chem 2016;8:114.
33.
Chen X, Zaro JL, Shen W-C: Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013;65:1357-1369.
34.
Sievers EL, Senter PD: Antibody-drug conjugates in cancer therapy. Annu Rev Med 2013;64:15-29.
35.
Deng S, Lin Z, Li W: Recent advances in antibody-drug conjugates for breast cancer treatment. Curr Med Chem 2017; doi: 10.2174/0929867324666170530092350.
36.
Weidle UH, Schneider B, Georges G, Brinkmann U: Genetically engineered fusion proteins for treatment of cancer. Cancer Genomics-Proteomics 2012;9:357-372.
37.
Huston JS, Levinson D, Mudgett-Hunter M, Tai M-S, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R: Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 1988;85:5879-5883.
38.
Becker JC, Pancook JD, Gillies SD, Mendelsohn J, Reisfeld RA: Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci U S A 1996;93:2702-2707.
39.
Gillies SD, Lan Y, Williams S, Carr F, Forman S, Raubitschek A, Lo K-M: An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma. Blood 2005;105:3972-3978.
40.
Schliemann C, Palumbo A, Zuberbühler K, Villa A, Kaspar M, Trachsel E, Klapper W, Menssen HD, Neri D: Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 2009;113:2275-2283.
41.
Spitaleri G, Berardi R, Pierantoni C, De Pas T, Noberasco C, Libbra C, González-Iglesias R, Giovannoni L, Tasciotti A, Neri D. Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clin Oncol 2013;139:447-455.
42.
Yoo E, Vasuthasawat A, Tran D, Lichtenstein A, Morrison S: Anti-CD138-targeted interferon is a potent therapeutic against multiple myeloma. J Interferon Cytokine Res 2015;35:281-291.
43.
Sarwar S, Bakbak B, Sadiq MA, Sepah YJ, Shah SM, Ibrahim M, Do DV, Nguyen QD: Fusion Proteins: Aflibercept (VEGF Trap-Eye). Dev Ophthalmol 2016;55:282-294.
44.
Stewart MW: Aflibercept (VEGF-TRAP): the next anti-VEGF drug. Inflamm Allergy Drug Targets 2011;10:497-508.
45.
Wu FT, Paez-Ribes M, Xu P, Man S, Bogdanovic E, Thurston G, Kerbel RS: Aflibercept and Ang1 supplementation improve neoadjuvant or adjuvant chemotherapy in a preclinical model of resectable breast cancer. Sci Rep 2016;6:36694.
46.
Kumtepe Y, Halici Z, Sengul O, Kunak CS, Bayir Y, Kilic N, Cadirci E, Pulur A, Bayraktutan Z: High serum HTATIP2/TIP30 level in serous ovarian cancer as prognostic or diagnostic marker. Eur J Med Res 2013;18:18.
47.
Garg G, Gibbs J, Belt B, Powell MA, Mutch DG, Goedegebuure P, Collins L, Piwnica-Worms D, Hawkins WG, Spitzer D: Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3. BMC Cancer 2014;14:35.
48.
Zhong J, Kang J, Wang X, Jiang W, Liao H, Yuan J: TAT-OSBP-1-MKK6 (E), a novel TAT-fusion protein with high selectivity for human ovarian cancer, exhibits anti-tumor activity. Med Oncol 2015;32:118.
49.
Faltas B, Goldenberg DM, Ocean AJ, Govindan SV, Wilhelm F, Sharkey RM, Hajdenberg J, Hodes G, Nanus DM, Tagawa ST: Sacituzumab govitecan, a novel antibody-drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma. Clin Genitourinary Cancer 2016;14:e75-e79.
50.
Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, Rossi EA, Chang C-H, Goldenberg DM: Sacituzumab govitecan (Immu-132), an anti-Trop-2/Sn-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem 2015;26:919-931.
51.
Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, Cigler T, Stopeck A, Citrin D, Oliff I: EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol 2015;33:1609-1619.
52.
Krop IE, Kim SB, González-Martín A, LoRusso PM, Ferrero JM, Smitt M, Yu R, Leung AC, Wildiers H; TH3RESA study collaborators: Trastuzumab emtansine versus treatment of physicianʼs choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:689-699.
53.
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R, Birrer MJ: Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J Clin Oncol 2016;35:1112-1118.
54.
Thomas LJ, Vitale L, O'Neill T, Dolnick RY, Wallace PK, Minderman H, Gergel LE, Forsberg EM, Boyer JM, Storey JR: Development of a novel antibody-drug conjugate for the potential treatment of ovarian, lung, and renal cell carcinoma expressing TIM-1. Mol Cancer Ther 2016;15:2946-2954.
55.
Sachdev J, Maitland M, Sharma M, Moreno V, Boni V, Kummar S, Gibson B, Xuan D, Joh T, Powell E: A phase 1 study of PF-06647020, an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients with advanced solid tumors including platinum resistant ovarian cancer (OVCA). Ann Oncol 2016;27(suppl 6):LBA35.
56.
Weekes CD, Lamberts LE, Borad MJ, Voortman J, McWilliams RR, Diamond JR, De Vries EG, Verheul HM, Lieu CH, Kim GP: Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol Cancer Ther 2016;15:439-447.
57.
Bodyak N, Yurkovetskiy A, Yin M, Gumerov D, Bollu R, Conlon P, Gurijala VR, McGillicuddy D, Stevenson C, Ter-Ovanesyan E: Discovery and preclinical development of a highly potent NaPi2b-targeted antibody-drug conjugate (ADC) with significant activity in patient-derived non-small cell lung cancer (NSCLC) xenograft models. Cancer Res 2016;76(14 suppl):abstract 1194.
58.
Hussain AF, Krüger HR, Kampmeier F, Weissbach T, Licha K, Kratz F, Haag R, Calderón M, Barth S: Targeted delivery of dendritic polyglycerol-doxorubicin conjugates by scFv-SNAP fusion protein suppresses EGFR+ cancer cell growth. Biomacromolecules 2013;14:2510-2520.
59.
Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM: Antibody-drug conjugates: current status and future directions. Drug Discov Today 2014;19:869-881.
60.
Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K: Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 2012;109:16101-16106.
61.
Schmidt SR: Fusion Protein Technologies for Biopharmaceuticals: Applications and Challenges. Hoboken, Wiley & Sons, 2013.
62.
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K: A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 2003;21:86-89.
63.
Juillerat A, Gronemeyer T, Keppler A, Gendreizig S, Pick H, Vogel H, Johnsson K: Directed evolution of O 6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 2003;10:313-317.
64.
Cole NB: Site-specific protein labeling with SNAP-tags. Curr Protoc Protein Sci 2013;73:Unit 30.1.
65.
Gautier A, Juillerat A, Heinis C, Corrêa IR JR, Kindermann M, Beaufils F, Johnsson K: An engineered protein tag for multiprotein labeling in living cells. Chem Biol 2008;15:128-136.
66.
Sumzin N, Moroz M, Ponomarev V: A New approach to SNAP-tag technology as a possible imaging tool for translational research. FASEB J 2015;29(1 suppl):577.
67.
Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK: Photodynamic therapy for treatment of solid tumors - potential and technical challenges. Technol Cancer Res Treat 2008;7:309-320.
68.
Van Dongen G, Visser G, Vrouenraets M: Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 2004;56:31-52.
69.
Hong G, Antaris AL, Dai H: Near-infrared fluorophores for biomedical imaging. Nat Biomed Engin 2017;1:0010.
70.
Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem 2012;23:604-609.
71.
Ogata F, Nagaya T, Nakamura Y, Sato K, Okuyama S, Maruoka Y, Choyke PL, Kobayashi H: Near-infrared photoimmunotherapy: a comparison of light dosing schedules. Oncotarget 2017;8:35069.
72.
Mallidi S, Anbil S, Bulin A-L, Obaid G, Ichikawa M, Hasan T: Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 2016;6:2458-2487.
73.
Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H: Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 2011;17:1685-1691.
74.
Woitok M, Klose D, Niesen J, Richter W, Abbas M, Stein C, Fendel R, Bialon M, Püttmann C, Fischer R:The efficient elimination of solid tumor cells by EGFR-specific and HER2-specific scFv-SNAP fusion proteins conjugated to benzylguanine-modified auristatin F. Cancer Lett 2016;381:323-330.
75.
Hussain AF, Kampmeier F, von Felbert V, Merk H-F, Tur MK, Barth S: SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells. Bioconjug Chem 2011;22:2487-2495.
76.
von Felbert V, Bauerschlag D, Maass N, Bräutigam K, Meinhold-Heerlein I, Woitok M, Barth S, Hussain AF: A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J Cancer Res Clin Oncol 2016;142:1003-1011.
77.
Bauerschlag D, Meinhold-Heerlein I, Maass N, Bleilevens A, Bräutigam K, Al Rawashdeh We, Di Fiore S, Haugg AM, Gremse F, Steitz J: Detection and specific elimination of EGFR+ ovarian cancer cells using a near infrared photoimmunotheranostic approach. Pharm Res 2017;34:696-703.
78.
Sato K, Watanabe R, Hanaoka H, Harada T, Nakajima T, Kim I, Paik CH, Choyke PL, Kobayashi H. Photoimmunotherapy: comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol Oncol 2014;8:620-632.
79.
Nagaya T, Nakamura Y, Sato K, Zhang Y-F, Ni M, Choyke PL, Ho M, Kobayashi H: Near infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget 2016;7:23361.
80.
Vahrmeijer AL, Hutteman M, Van Der Vorst JR, Van De Velde CJ, Frangioni JV: Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 2013;10:507-518.
81.
Veronesi U, Volterrani F, Luini A, Saccozzi R, Del Vecchio M, Zucali R, Galimberti V, Rasponi A, Di Re E, Squicciarini P: Quadrantectomy versus lumpectomy for small size breast cancer. Eur J Cancer Clin Oncol 1990;26:671-673.
82.
Martinek IE, Kehoe S: When should surgical cytoreduction in advanced ovarian cancer take place? J Oncol 2010;2010:852028.
83.
McCreath WA, Chi DS: Surgical cytoreduction in ovarian cancer. Oncology (Williston Park) 2004;18:645-664.
84.
Chi D, Eisenhauer E, Lang J, Huh J, Haddad L, Abu-Rustum N, Sonoda Y, Levine D, Hensley M, Barakat R: What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol 2006;103:559-564.
85.
Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H: Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 2011;12:1062-1070.
86.
Ueland FR: A perspective on ovarian cancer biomarkers: past, present and yet-to-come. Diagnostics 2017;7:14.
87.
Gotoh K, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, Ohigashi H, Tomita Y, Miyamoto Y, Imaoka S: A novel image‐guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol 2009;100:75-79.
88.
Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV: The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 2009;16:2943-2952.
89.
Mieog JSD, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers G-J, Choi HS, Gibbs-Strauss SL, Putter H: Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol 2011;18:2483-2491.
90.
Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ: Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc 2012;26:197-204.
91.
van der Poel HG, Buckle T, Brouwer OR, Olmos RAV, van Leeuwen FW: Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 2011;60:826-833.
92.
Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, Stifelman MD: Near‐infrared fluorescence imaging to facilitate super‐selective arterial clamping during zero‐ischaemia robotic partial nephrectomy. BJU Int 2013;111(4):604-610.
93.
Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM: Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 2013;27:2156-2162.
94.
Oliveira S: Considerations on the advantages of small tracers for optical molecular imaging. J Mol Biol 2015;2:1-4.
95.
van den Vorst JR: Near-Infrared Fluorescence-Guided Surgery: Pre-Clinical Validation and Clinical Translation. Department Surgery, Faculty of Medicine/Leiden University Medical Center (LUMC), Leiden University, 2014.
96.
Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A, Barth S: Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 2009;20:1010-1015.
97.
Amoury M, Blume T, Brehm H, Niesen J, Tenhaef N, Barth S, Gattenlohner S, Helfrich W, Fitting J, Nachreiner T: SNAP-tag based agents for preclinical in vitro imaging in malignant diseases. Curr Pharm Des 2013;19:5429-5436.
98.
Pardo A, Stöcker M, Kampmeier F, Melmer G, Fischer R, Thepen T, Barth S: In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model. Cancer Immunol Immunother 2012;61:1617-1626.
99.
Keppler A, Kindermann M, Gendreizig S, Pick H, Vogel H, Johnsson K: Labeling of fusion proteins of O 6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 2004;32:437-444.
100.
Klose D, Saunders U, Barth S, Fischer R, Jacobi AM, Nachreiner T: Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen. BMC Biotechnol 2016;16:18.
101.
Bosch PJ, Corrêa IR, Sonntag MH, Ibach J, Brunsveld L, Kanger JS, Subramaniam V: Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. Biophys J 2014;107:803-814.
102.
Choudhary S, Barth S, Verma R: SNAP-Tag technology: a promising tool for ex vivo immunophenotyping. Mol Diagnosis Ther 2017; DOI: 10.1007/s40291-017-0263-2.
103.
Niesen J, Sack M, Seidel M, Fendel R, Barth S, Fischer R, Stein C: SNAP-tag technology: a useful tool to determine affinity constants and other functional parameters of novel antibody fragments. Bioconjug Chem 2016;27:1931-1941.
104.
Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, Fischer R, Kießling F, Barth S, Thepen T: Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imaging 2010;37:1926-1934.
105.
Bojkowska K, de Sio FS, Barde I, Offner S, Verp S, Heinis C, Johnsson K, Trono D: Measuring in vivo protein half-life. Chem Biol 2011;18:805-815.
106.
Gong H, Kovar JL, Baker B, Zhang A, Cheung L, Draney DR, Corrêa IR Jr, Xu M-Q, Olive DM: Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag. PloS One 2012;7:e34003.
107.
Eklund M, Axelsson L, Uhlén M, Nygren PÅ: Anti‐idiotypic protein domains selected from protein A‐based affibody libraries. Proteins 2002;48:454-462.
108.
Gao J, Chen K, Miao Z, Ren G, Chen X, Gambhir SS, Cheng Z: Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 2011;32:2141-2148.
109.
Oliveira S, Schiffelers RM, van der Veeken J, van der Meel R, Vongpromek R, en Henegouwen PMvB, Storm G, Roovers RC: Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Control Release 2010;145:165-175.
110.
Ding L, Tian C, Feng S, Fida G, Zhang C, Ma Y, Ai G, Achilefu S, Gu Y: Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics 2015;5:378-398.
111.
Oliveira S, Van Dongen GA, Walsum MS-v, Roovers RC, Stam JC, Mali W, Van Diest PJ, van Bergen en Henegouwen PM: Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging 2012;11:33-46.
112.
Gong H, Kovar JL, Cheung L, Rosenthal EL, Olive DM: A comparative study of affibody, panitumumab, and EGF for near-infrared fluorescence imaging of EGFR-and EGFRvIII-expressing tumors. Cancer Biol Ther 2014;15:185-193.
113.
Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang B-S, Paik CH, Urano Y, Choyke PL, Kobayashi H: In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 2007;13:6639-6648.
114.
Koyama Y, Barrett T, Hama Y, Ravizzini G, Choyke PL, Kobayashi H: In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 2007;9:1021-1029.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.