Summary
2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.
References
1.
Tytherleigh-Strong GM, Keating JF, Court-Brown CM: Extra-articular fractures of the proximal tibial diaphysis: Their epidemiology, management and outcome. J R Coll Surg Edinb 1997;42:334-338.
2.
Black CR, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo RO: Bone tissue engineering. Curr Mol Biol Rep 2015;1:132-140.
3.
Svedbom A, Hernlund E, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA; EU Review Panel of IOF: Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 2013;8:137.
4.
Rosenwasser MP, Cuellar D: Medical management of osteoporosis and the surgeons' role. Injury 2016;47 (suppl 1):S62-64.
5.
Murphy CM, O'Brien FJ, Little DG, Schindeler A: Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 2013;26:120-132.
6.
Urist MR: Bone: Formation by autoinduction. Science 1965;150:893-899.
7.
Gomez-Barrena E, Rosset P, Muller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP: Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 2011;15:1266-1286.
8.
Delloye C, Cornu O, Druez V, Barbier O: Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 2007;89:574-579.
9.
Rosset P, Deschaseaux F, Layrolle P: Cell therapy for bone repair. Orthop Traumatol Surg Res 2014;100:S107-112.
10.
Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB: Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976) 2006;31:542-547.
11.
Stegen S, van Gastel N, Carmeliet G: Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone 2015;70:19-27.
12.
Williams DF: There is no such thing as a biocompatible material. Biomaterials 2014;35:10009-10014.
13.
Damadzadeh B, Jabari H, Skrifvars M, Airola K, Moritz N, Vallittu PK: Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. J Mater Sci Mater Med 2010;21:2523-2531.
14.
Akkouch A, Zhang Z, Rouabhia M: Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (l-lactide-co-epsilon-caprolactone) scaffold. J Biomater Appl 2014;28:922-936.
15.
Cunniffe GM, Dickson GR, Partap S, Stanton KT, O'Brien FJ: Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med 2010;21:2293-2298.
16.
Friedenstein AJ, Gorskaja JF, Kulagina NN: Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267-274.
17.
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C: Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016;83:197-209.
18.
Berner A, Henkel J, Woodruff MA, Steck R, Nerlich M, Schuetz MA, Hutmacher DW: Delayed minimally invasive injection of allogenic bone marrow stromal cell sheets regenerates large bone defects in an ovine preclinical animal model. Stem Cells Transl Med 2015;4:503-512.
19.
Yamada T, Yoshii T, Sotome S, Yuasa M, Kato T, Arai Y, Kawabata S, Tomizawa S, Sakaki K, Hirai T, Shinomiya K, Okawa A: Hybrid grafting using bone marrow aspirate combined with porous beta-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting. Spine (Phila Pa 1976) 2012;37: E174-179.
20.
Damron TA, Lisle J, Craig T, Wade M, Silbert W, Cohen H: Ultraporous beta-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg Am 2013;95:158-166.
21.
Russell TA, Leighton RK; Alpha-BSM Tibial Plateau Fracture Study Group: Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 2008;90:2057-2061.
22.
Scherberich A, Muller AM, Schafer DJ, Banfi A, Martin I: Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol 2010;225:348-353.
23.
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-4295.
24.
Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W: Adipose-derived mesenchymal cells for bone regereneration: state of the art. Biomed Res Int 2013;2013:416391.
25.
Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS: Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004;14:311-324.
26.
Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, Caplan AI, Gimble JM, Dorafshar AH, Grayson WL: Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells 2015;33:2773-2784.
27.
Lee JW, Kim KJ, Kang KS, Chen S, Rhie JW, Cho DW: Development of a bone reconstruction technique using a solid free-form fabrication (SFF)-based drug releasing scaffold and adipose-derived stem cells. J Biomed Mater Res A 2013;101:1865-1875.
28.
Samorezov JE, Headley EB, Everett CR, Alsberg E: Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels. J Biomed Mater Res A 2016;104:1387-1397.
29.
Lee SJ, Kang SW, Do HJ, Han I, Shin DA, Kim JH, Lee SH: Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 2010;31:5652-5659.
30.
Weimin P, Zheng C, Shuaijun J, Dan L, Jianchang Y, Yue H: Synergistic enhancement of bone regeneration by LMP-1 and HIF-1alpha delivered by adipose derived stem cells. Biotechnol Lett 2016;38:377-384.
31.
Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC: Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type i. J Tissue Eng Regen Med 2013;doi: 10.1002/term.1811.
32.
Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ: Characterization of novel akermanite: poly-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. J Tissue Eng Regen Med 2015;9:389-404.
33.
Frohlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G: Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng Part A 2010;16:179-189.
34.
Silva AR, Paula AC, Martins TM, Goes AM, Pereria MM: Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 2014;102:818-827.
35.
Papadimitropoulos A, Scherberich A, Guven S, Theilgaard N, Crooijmans HJ, Santini F, Scheffler K, Zallone A, Martin I: A 3D in vitro bone organ model using human progenitor cells. Eur Cell Mater 2011;21:445-458; discussion 458.
36.
Guven S, Mehrkens A, Saxer F, Schaefer DJ, Martinetti R, Martin I, Scherberich A: Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials 2011;32:5801-5809.
37.
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G: Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 2014;25:2445-2461.
38.
Sandor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerstrom B, Patrikoski M, Seppanen R, Miettinen S, Rautiainen M, Ohman J: Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014;3:530-540.
39.
Sandor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerstrom B, Lappalainen OP, Seppanen R, Miettinen S: Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg 2013;71:938-950.
40.
Balmayor ER: Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015;94:13-27.
41.
Rosen V: BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 2009;20:475-480.
42.
Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW: Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 2013;34:9960-9968.
43.
Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T; BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group: Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002;84-A:2123-2134.
44.
Maia FR, Bidarra SJ, Granja PL, Barrias CC: Functionalization of biomaterials with small osteoinductive moieties. Acta Biomater 2013;9:8773-8789.
45.
Bergeron E, Leblanc E, Drevelle O, Giguere R, Beauvais S, Grenier G, Faucheux N: The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 2012;18:342-352.
46.
Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, Pan H, Zou Z, Chen C: Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res 2011;29:1745-1752.
47.
Park KW, Waki H, Kim WK, Davies BS, Young SG, Parhami F, Tontonoz P: The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Biol 2009;29:3905-3914.
48.
Miguel BS, Ghayor C, Ehrbar M, Jung RE, Zwahlen RA, Hortschansky P, Schmoekel HG, Weber FE: N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration. Tissue Eng Part A 2009;15:2955-2963.
49.
Lee KP, Chromey NC, Culik R, Barnes JR, Schneider PW: Toxicity of n-methyl-2-pyrrolidone (NMP): teratogenic, subchronic, and two-year inhalation studies. Fundam Appl Toxicol 1987;9:222-235.
50.
Ghayor C, Correro RM, Lange K, Karfeld-Sulzer LS, Gratz KW, Weber FE: Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. J Biol Chem 2011;286:24458-24466.
51.
Karfeld-Sulzer LS, Ghayor C, Siegenthaler B, de Wild M, Leroux JC, Weber FE: N-methyl pyrrolidone/bone morphogenetic protein-2 double delivery with in situ forming implants. J Control Release 2015;203:181-188.
52.
Mercado-Pagan AE, Stahl AM, Shanjani Y, Yang Y: Vascularization in bone tissue engineering constructs. Ann Biomed Eng 2015;43:718-729.
53.
Langenfeld EM, Langenfeld J: Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res 2004;2:141-149.
54.
Yeh LC, Lee JC: Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells. Mol Cell Endocrinol 1999;153:113-124.
55.
Cai WX, Zheng LW, Li CL, Ma L, Ehrbar M, Weber FE, Zwahlen RA: Effect of different rhBMP-2 and TG-VEGF ratios on the formation of heterotopic bone and neovessels. Biomed Res Int 2014;2014:571510.
56.
Geuze RE, Theyse LF, Kempen DH, Hazewinkel HA, Kraak HY, Oner FC, Dhert WJ, Alblas J: A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng Part A 2012;18:2052-2062.
57.
Liu Y, Chan JK, Teoh SH: Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 2015;9:85-105.
58.
Costa-Almeida R, Granja PL, Soares R, Guerreiro SG: Cellular strategies to promote vascularisation in tissue engineering applications. Eur Cell Mater 2014;28:51-66; discussion 66-57.
59.
Tsigkou O, Pomerantseva I, Spencer JA, Redondo PA, Hart AR, O'Doherty E, Lin Y, Friedrich CC, Daheron L, Lin CP, Sundback CA, Vacanti JP, Neville C: Engineered vascularized bone grafts. Proc Natl Acad Sci U S A 2010;107:3311-3316.
60.
Moran CG, Wood MB: Vascularized bone autografts. Orthop Rev 1993;22:187-197.
61.
Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, Barbero A, Manz MG, Martin I: Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A 2013;110:3997-4002.
62.
Stiers PJ, van Gastel N, Carmeliet G: Targeting the hypoxic response in bone tissue engineering: a balance between supply and consumption to improve bone regeneration. Mol Cell Endocrinol 2016;432:96-105.
63.
van Gastel N, Stegen S, Stockmans I, Moermans K, Schrooten J, Graf D, Luyten FP, Carmeliet G: Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 2014;32:2407-2418.
© 2016 S. Karger GmbH, Freiburg
2016
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.