Eine Hypothese zur Entstehung des Bewusstseins wird eingeführt, nach der i) die Nervenendungen von jedem einzelnen Axon und ii) die Synapsen zwischen diesen Nervenendungen und den Dendriten des nächsten Neurons mithilfe der Rekursivität von In-vivo-Quanten-Doppelspalt-Transportvorgängen das Bewusstsein ermöglichen, so wie die Synapsen die Neuroplastizität des Gehirns und somit das Lernen mitbestimmen. Diese Rekursivität geschieht, indem die Gliazellen, insbesondere die Astrozyten, direkt in die neuronale Informationsübertragung eingreifen (ein Vorgang, der subjektiv im Sinne des sogenannten «versteckten Beobachters» erlebt wird) und damit dem unbewussten Da-Sein durch einen erhöhten Ausdruck der gliären (astrozytären) Rezeptoren Bewusst- Sein verleihen. Diese Hypothese ermöglicht eine Theoriebildung zu bestimmten anatomisch-biochemischen Gegebenheiten in Verbindung mit der Quantentheorie und der Bewusstseinswissenschaft: «Unbewusste Vorstellungen» («Bewusstsein an sich»), d.h. quantenphysikalische Strukturen mit Ursprung z.B. in den Gliazellen/Mikrotubuli/usw., die wir subjektiv als autonome Vorstellungen erleben, können die Dekohärenz der Quantenwellenfunktion Ψ des Gehirns genügend lange verhindern bzw. die Kohärenz genügend lange aufrechterhalten, um mental und physiologisch realisierbare Quantenrechnungen («Bewusstsein von») zu ermöglichen, die rekursiv selbstorganisierend in das sich selbst erlebende Phänomen «Bewusstsein» konvergieren. Demnach ist der aus der Hypnotherapie bekannte «versteckte Beobachter» letztendlich in den gliären (astrozytären) Rezeptoren versteckt, sodass die Selbstbeobachtung die Selbstheilung beeinflussen kann.

1.
Schultz JH: Hypnosetechnik: Praktische Anleitung zum Hypnotisieren für Ärzte, ed 5. Stuttgart, Gustav Fischer, 1965, p 16.
2.
Schmid GB: Selbstheilung durch Vorstellungskraft, ed 1. Wien, Springer, 2010.
3.
Schmid GB: Tod durch Vorstellungskraft: Das Geheimnis psychogener Todesfälle, ed 2. Wien, Springer, 2009.
4.
Sporns O, Tononi G, Edelman GM: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 2000;13:909-922.
5.
Tononi G, Edelman GM: Schizophrenia and the mechanisms of conscious integration. Brain Res Brain Res Rev 2000;31:391-400.
6.
Damasio AR: The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996;351:1413-1420.
7.
Damasio AR: Ich fühle, also bin ich - die Entschlüsselung des Bewusstseins. München, List, 2000.
8.
Premack D, Woodruff G: Does the chimpanzee have a theory of mind? Behav Brain Sci 1978;4:515-526.
9.
French RM: The turing test: the first 50 years. Trends Cogn Sci 2000;4:115-122.
10.
Tononi G, Sporns O: Measuring information integration. BMC Neurosci 2003;4:31.
11.
Tononi G: Consciousness as integrated information: a provisional manifesto. Biol Bull 2008;215:216-242.
12.
Tononi G, Koch C: The neural correlates of consciousness: an update. Ann N Y Acad Sci 2008;1124:239-261.
13.
Koch C, Reid RC: Neuroscience: observatories of the mind. Nature 2012;483:397-398.
14.
Koch C: Neuroscience: a quest for consciousness. Nature 2012;488:29-30.
15.
Schmid GB: Biunity (îkilibirlik). Ankara, Agarta Yayinlari, 2008.
16.
Atmanspacher H: Quantum theory and consciousness: an overview with selected examples. Discrete Dyn Nat Sci 2004;8:51-73.
17.
Hammeroff SR: The brain is both a neuro-computer and quantum computer. Cogn Sci 2007;31:1035-1045.
18.
Litt A, Eliasmith C, Kroon FW, Weinstein S, Thagard P: Is the brain a quantum computer? Cogn Sci 2006;30:593-603.
19.
Penrose R: The Emperor's New Mind. Oxford, Oxford University Press, 1989.
20.
Schmid GB, Dünki RM: How quantum is the classical world? Int J Probabil Stat 2012;1:80-94.
21.
Dummit DS, Foote RM: Abstract algebra, ed 3. New York, Wiley, 2004.
22.
Haydon PG: Glia: listening and talking to the synapse. Nat Rev Neurosci 2001;2:185-193.
23.
Haydon PG: Neuroglial networks: neurons and glia talk to each other. Curr Biol 2000;10:R712-714.
24.
Araque A, Parpura V, Sanzgiri RP, Haydon PG: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999;22:208-215.
25.
Pascual O, Haydon PG: Synaptic inhibition mediated by glia. Neuron 2003;40:873-875.
26.
Verkhratsky A, Butt A: Glial neurobiology. West Sussex, Wiley, 2007.
27.
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A: Gliotransmitters travel in time and space. Neuron 2014;81:728-739.
28.
Araque A, Sanzgiri RP, Parpura V, Haydon PG: Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 1999;77:699-706.
29.
Laming PR: Potassium signalling in the brain: its role in behaviour. Neurochem Int 2000;36:271-290.
30.
Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG: Glutamate-mediated astrocyte-neuron signalling. Nature 1994;369:744-747.
31.
Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V: Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 2012;4:pii: e00080.
32.
Mitterauer B, Kopp K: The self-composing brain: towards a glial-neuronal brain theory. Brain Cogn 2003;51:357-367.
33.
Schmid GB: Phantasy therapy: a novel theoretic and therapeutic approach for the special treatment of psychotic patients in general psychiatry; in Abelian ME (ed): Focus on Psychotherapy Research. New York, Nova Science, 2005, pp 1-50.
34.
Spitzer S, Agathou S, Karadottir RT: Clever glia. Stem Cell Res Ther 2013;4:100.
35.
Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibanez O, Pazos A, Araque A: Artificial astrocytes improve neural network performance. PLoS One 2011;6:e19109.
36.
Lehnen-Beyel I: Kleber mit Köpfchen (Leben und Umwelt - Hirnforschung). Bild der Wissenschaft 2008;9:20.
37.
Mitterauer BJ: Neues Modell der Depression: Die rasche anti-depressive Wirkung von Ketamine könnte auf der Blockade von NMDA-Rezeptoren in Astrozyten beruhen. Psychopraxis 2012;15:27.
38.
Mitterauer BJ: Ketamine may block NMDA receptors in astrocytes causing a rapid anti-depressant effect. Front Synaptic Neurosci 2012;4:8.
39.
Mitterauer BJ: The loss of self-boundaries: towards a neuromolecular theory of schizophrenia. Biosystems 2003;72:209-215.
40.
Mitterauer BJ: Loss of function of glial gap junctions may cause severe cognitive impairments in schizophrenia. Med Hypotheses 2009;73:393-397.
41.
Mitterauer BJ: Possible role of glia in cognitive impairment in schizophrenia. CNS Neurosci Ther 2011;17:333-344.
42.
Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A: Glial cells in (patho)physiology. J Neurochem 2012;121:4-27.
43.
Steinhauser C, Seifert G: Astrocyte dysfunction in epilepsy; in Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds): Jasper's Basic Mechanisms of the Epilepsies. Bethesda, MD, National Center for Biotechnology Information (US), 2012.
44.
Carmignoto G, Haydon PG: Astrocyte calcium signaling and epilepsy. Glia 2012;60:1227-1233.
45.
Nam HW, McIver SR, Hinton DJ, Thakkar MM, Sari Y, Parkinson FE, Haydon PG, Choi DS: Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res 2012;36:1117-1125.
46.
Ikeda H, Kiritoshi T, Murase K: Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat. Mol Pain 2012;8:43.
47.
Mitterauer B: An interdisciplinary approach towards a theory of consciousness. Biosystems 1998;45:99-121.
48.
Schilpp P (ed): Albert Einstein, Philosopher-Scientist. Evanston, IL, Library of Living Philosophers, 1951.
49.
Selleri F, Tarozzi G: Quantum mechanics reality and separability. La Rivista del Nuovo Cimento 1981;4:1-53.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.