Gonadal cellular organization is very similar in all vertebrates, though different processes can trigger bipotential gonads to develop into either testes or ovaries. While mammals and birds, apart from some exceptions, show genetic sex determination (GSD), other animals, like turtles and crocodiles, express temperature-dependent sex determination. In some groups of animals, GSD can also be overridden by hormone or temperature influences, indicating how fragile this system can be. This review aims to explain the fundamental molecular mechanisms involved in mammalian GSD, mainly referring to mouse as a major model. Conceivably, other mammals might show a molecular mechanism different from the commonly investigated murine species.

1.
Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813-2828 (2002).
[PubMed]
2.
Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo MM, et al: Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol 314:71-83 (2008).
[PubMed]
3.
Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, et al: A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7:497-501 (1994).
[PubMed]
4.
Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo M, et al: Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74:195-201 (2006).
[PubMed]
5.
Barske LA, Capel B: Blurring the edges in vertebrate sex determination. Curr Opin Genet Dev 18:499-505 (2008).
[PubMed]
6.
Bergstrom DE, Young M, Albrecht KH, Eicher EM: Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 28:111-124 (2000).
7.
Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al: Genetic evidence equating SRY and the testis-determining factor. Nature348:448-450 (1990).
8.
Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ: A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med 351:792-798 (2004).
[PubMed]
9.
Birk O, Casiano D, Wassif C, Cogliati T, Zhao L, et al: The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature403:909-913 (2000).
[PubMed]
10.
Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, et al: A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26:490-494 (2000).
[PubMed]
11.
Bitgood MJ, Shen L, McMahon AP: Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6:298-304 (1996).
[PubMed]
12.
Bogani D, Siggers P, Brixey R, Warr N, Beddow S, et al: Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 7:1-19 (2009).
13.
Bouma G, Albrecht K, Washburn L, Recknagel A, Churchill G, et al: Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 132:3045-3054 (2005).
[PubMed]
14.
Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, et al: Retinoid signalling determines germ cell fate in mice. Science 312:596-600 (2006).
[PubMed]
15.
Brennan J, Capel B: One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509-521 (2004).
[PubMed]
16.
Brennan J, Tilmann C, Capel B: Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800-810 (2003).
[PubMed]
17.
Buehr M, Gu S, McLaren A: Mesonephric contribution to testis differentiation in the fetal mouse. Development 117:273-281 (1993).
[PubMed]
18.
Bullejos M, Koopman P: Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221:201-205 (2001).
[PubMed]
19.
Bullejos M, Koopman P: Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Dev Biol278:473-481 (2005).
20.
Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, et al: Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604-608 (1998).
[PubMed]
21.
Chaboissier M, Kobayashi A, Vidal V, Lützkendorf S, van de Kant H, et al: Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131:1891-1901 (2004).
[PubMed]
22.
Chassot A, Ranc F, Gregoire E, Roepers-Gaja-dien R, Taketo M, et al: Activation of β-cate-nin signaling by Rspo1 controls differenti-ation of the mammalian ovary. Hum Mol Genet 17:1264-1277 (2008).
[PubMed]
23.
Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM: Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 216:72-88 (1999).
[PubMed]
24.
Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM: Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875-889 (2001).
[PubMed]
25.
Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, et al: Endothelial cell migration directs testis cord formation. Dev Biol 326:112-120 (2009).
[PubMed]
26.
Coveney D, Cool J, Oliver T, Capel B: Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci USA 105:7212-7217 (2008).
[PubMed]
27.
Cox JJ, Willatt L, Homfray T, Woods CG: A SOX9 duplication and familial 46,XX developmental testicular disorder. N Engl J Med 364:91-93 (2011).
[PubMed]
28.
Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, et al: Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839-844 (2001).
[PubMed]
29.
Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, et al: The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27:159-166 (2001).
[PubMed]
30.
Cui S, Ross A, Stallings N, Parker KL, Capel B, et al: Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131:4095-4105 (2004).
[PubMed]
31.
Desclozeaux M, Poulat F, de Santa Barbara P, Capony J, Turowski P, et al: Phosphorylation of an N-terminal motif enhances DNA-binding activity of the human SRY protein. J Biol Chem 273:7988-7995 (1998).
32.
Díaz-Hernández V, León del Río A, Zamora M, Merchant-Larios H: Expression profiles of SRY and SOX9 in rabbit gonads: the classical model of mammalian sex differentiation. Sex Dev 2:152-166 (2008).
[PubMed]
33.
Eicher E, Washburn L, Whitney J, Morrow K: Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217:535-537 (1992).
34.
Forwood JK, Harley V, Jans DA: The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin β1. J Biol Chem 276:46575-46582 (2001).
35.
Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, et al: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525-530 (1994).
[PubMed]
36.
Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, et al: Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol 9:36 (2009).
[PubMed]
37.
Gubbay J, Collignon J, Koopman P, Capel B, Economou A, et al: A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245-250 (1990).
[PubMed]
38.
Hammes A, Guo J, Lutsch G, Leheste J, Landrock D, et al: Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319-329 (2001).
[PubMed]
39.
Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, et al: SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91:403-407 (2000).
[PubMed]
40.
Harley VR, Goodfellow PN: The biochemical role of SRY in sex determination. Mol Reprod Dev 9:184-193 (1994).
41.
Harley VR, Lovell-Badge R, Goodfellow P, Hextall P: The HMG box of SRY is a calmodulin binding domain. FEBS Lett 391:24-28 (1996).
42.
Hatano O, Takayama K, Imai T, Waterman M, Takakusu A, et al: Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787-2797 (1994).
[PubMed]
43.
Hiramatsu R, Matoba S, Kanai-Azuma M, Tsunekawa N, Katoh-Fukui Y, et al: A critical time window of Sry action in gonadal sex determination in mice. Development 136:129-138 (2009).
[PubMed]
44.
Huang B, Wang S, Ning Y, Lamb AN, Bartley J: Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87:349-353 (1999).
[PubMed]
45.
Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, et al: Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130:3663-3670 (2003).
[PubMed]
46.
Jost A: The age factor in the castration of male rabbit fetuses. Proc Soc Exp Biol Med 66:302 (1947).
47.
Kashimada K, Pelosi E, Chen H, Schlessinger D, Wilhelm D, et al: FOXL2 and BMP2 act cooperatively to regulate follistatin gene expression during ovarian development. Endocrinology 152:272-280 (2011).
[PubMed]
48.
Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, et al: Male-to-female sex reversal in M33 mutant mice. Nature 393:688-692 (1998).
[PubMed]
49.
Kaur G, Jans DA: Dual nuclear import mechanisms of sex determining factor SRY: intracellular Ca2+ as a switch. FASEB J 25:665-675 (2011).
50.
Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, et al: Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol 278:511-525 (2005).
[PubMed]
51.
Kim H, Rimmer K, Kelly S, Ludbrook LM, Clayton AH, et al: Defective calmodulin-mediated nuclear transport of the sex-determining region of the Y chromosome (SRY) in XY sex reversal. Mol Endocrinol 19:1884-1892 (2005).
52.
Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al: Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:1000-1009 (2006).
53.
Kim Y, Bingham N, Sekido R, Parker K, Lovell-Badge R, et al: Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci USA 104:16558-16563 (2007).
[PubMed]
54.
Kimelman D, Xu W: Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482-7491 (2006).
[PubMed]
55.
Knower K, Kelly S, Harley V: Turning on the male - SRY, SOX9 and sex determination in mammals. Cytogenet Genome Res 101:185-198 (2003).
[PubMed]
56.
Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R: Male development of chromosomally female mice transgenic for Sry. Nature 351:117-121 (1991).
[PubMed]
57.
Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, et al: WT-1 is required for early kidney development. Cell 74:679-691 (1993).
[PubMed]
58.
Lavery R, Lardenois A, Ranc-Jianmotamedi F, Pauper E, Gregoire EP, et al: XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 354:111-122 (2011).
59.
Liu C, Bingham N, Parker K, Yao H: Sex-specific roles of β-catenin in mouse gonadal development. Hum Mol Genet 18:405-417 (2009).
[PubMed]
60.
Lovell-Badge R, Canning C, Sekido R: Sex determining genes in mice: building pathways. Novartis Found Symp 244:4-18 (2002).
61.
Luo X, Ikeda Y, Parker K: A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell77:481-490 (1994).
62.
Maatouk D, DiNapoli L, Alvers A, Parker K, Taketo M, et al: Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17:2949-2955 (2008).
[PubMed]
63.
Manuylov NL, Zhou B, Ma Q, Fox SC, Pu WT, et al: Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 353:229-241 (2011).
64.
Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, et al: DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559-563 (2002).
[PubMed]
65.
Meeks J, Weiss J, Jameson J: Dax1 is required for testis determination. Nat Genet 34:32-33 (2003).
[PubMed]
66.
Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S: Defects of urogenital development in mice lacking Emx2. Development 124:1653-1664 (1997).
[PubMed]
67.
Moniot B, Declosmenil F, Barrionuevo F, Scherer G, Aritake K, et al: The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development 136:1813-1821 (2009).
[PubMed]
68.
Montazer-Torbati F, Kocer A, Auguste A, Renault L, Charpigny G, et al: A study of goat SRY protein expression suggests putative new roles for this gene in the developing testis of a species with long-lasting SRY expression. Dev Dyn 239:3324-3335 (2010).
[PubMed]
69.
Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, et al: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62-68 (1996).
[PubMed]
70.
Nam JS, Turcotte TJ, Yoon JK: Dynamic expression of R-spondin family genes in mouse development. Gene Expr Patterns 7:306-312 (2007).
[PubMed]
71.
Nanda S, DeFalco TJ, Hui Yong Loh S, Phochanukul N, Camara N, et al: Sox100B, a Drosophila group E Sox-domain gene, is required for somatic testis differentiation. Sex Dev 3:26-37 (2009).
72.
Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, et al: Testis determination requires insulin receptor family function in mice. Nature 426:291-295 (2003).
[PubMed]
73.
Nef S, Schaad O, Stallings N, Cederroth C, Pitetti J, et al: Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287:361-377 (2005).
[PubMed]
74.
Ottolenghi C, Omari S, Garcia-Ortiz J, Uda M, Crisponi L, et al: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14:2053-2062 (2005).
[PubMed]
75.
Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, et al: Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16:2795-2804 (2007).
[PubMed]
76.
Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S, et al: A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29:453-458 (2001).
[PubMed]
77.
Palmer SJ, Burgoyne PS: In situ analysis of fetal, prepuberal and adult XX↔XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112:265-268 (1991).
[PubMed]
78.
Pannetier M, Tilly G, Kocer A, Hudrisier M, Renault L, et al: Goat SRY induces testis development in XX transgenic mice. FEBS Lett 580:3715-3720 (2006).
[PubMed]
79.
Parma P, Pailhoux E, Cotinot C: Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol Reprod 61:741-748 (1999).
[PubMed]
80.
Parma P, Radi O, Vidal V, Chaboissier M, Dellambra E, et al: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304-1309 (2006).
[PubMed]
81.
Payen E, Pailhoux E, Abou Merhi R, Gianquinto L, Kirszenbaum M, et al: Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. Int J Dev Biol 40:567-575 (1996).
[PubMed]
82.
Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, et al: Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 13:6115-6124 (1994).
[PubMed]
83.
Radi O, Parma P, Imbeaud S, Nasca MR, Uccellatore F, et al: XX sex reversal, palmoplantar keratoderma, and predisposition to squamous cell carcinoma: genetic analysis in one family. Am J Med Genet A 138:241-246 (2005).
84.
Raymond CS, Parker ED, Kettlewell JR, Brown LG, Page DC, et al: A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 8:989-996 (1999).
[PubMed]
85.
Raymond CS, Murphy MW, O'Sullivan MG, Bardwell VJ, Zarkower D: Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14:2587-2595 (2000).
[PubMed]
86.
Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, et al: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608-612 (1998).
87.
Ross AJ, Capel B: Signaling at the crossroads of gonad development. Trends Endocrinol Metab 16:19-25 (2005).
[PubMed]
88.
Ross DG, Bowles J, Hope M, Lehnert S, Koopman P: Profiles of gonadal gene expression in the developing bovine embryo. Sex Dev 3:273-283 (2009).
89.
Schmahl J, Kim Y, Colvin J, Ornitz D, Capel B: Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627-3636 (2004).
[PubMed]
90.
Schmidt D, Ovitt C, Anlag K, Fehsenfeld S, Gredsted L, et al: The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933-942 (2004).
[PubMed]
91.
Sekido R, Lovell-Badge R: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930-934 (2008).
[PubMed]
92.
Sekido R, Bar I, Narvàez V, Penny G, Lovell-Badge R: SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274:271-279 (2004).
[PubMed]
93.
Shen JH, Ingraham HA: Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol 16:529-540 (2002).
94.
Sim H, Rimmer K, Kelly S, Ludbrook LM, Clayton AH, Harley VR: Defective calmodulin- mediated nuclear transport of the sex-determining region of the Y chromosome (SRY) in XY sex reversal. Mol Endocrinol 19:1884-1892 (2005).
95.
Sim H, Argentaro A, Harley VR: Boys, girls and shuttling of SRY and SOX9. Trends Endocrinol Metab 19:213-222 (2008).
[PubMed]
96.
Sinclair A, Berta P, Palmer M, Hawkins J, Griffiths B, et al: A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240-244 (1990).
[PubMed]
97.
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, et al: The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267-271 (2009).
[PubMed]
98.
Südbeck P, Schmitz ML, Baeuerle PA, Scherer G: Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat Ge-net 13:230-232 (1996).
[PubMed]
99.
Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G: Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12:404-409 (1998).
100.
Tevosian SG, Manuylov NL: To beta or not to beta: canonical beta-catenin signaling pathway and ovarian development. Dev Dyn 237:3672-3680 (2008).
[PubMed]
101.
Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, et al: Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129:4627-4634 (2002).
[PubMed]
102.
Thevenet L, Méjean C, Moniot B, Bonneaud N, Galéotti N, et al: Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 23:3336-3345 (2004).
103.
Tilmann C, Capel B: Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883-2890 (1999).
[PubMed]
104.
Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, et al: R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17:1278-1291 (2008).
[PubMed]
105.
Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, et al: Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130-1142 (2009).
[PubMed]
106.
Vainio S, Heikkilä M, Kispert A, Chin N, McMahon A: Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405-409 (1999).
[PubMed]
107.
Verheyen EM, Gottardi CJ: Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 239:34-44 (2010).
108.
Vidal V, Chaboissier M, de Rooij D, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216-217 (2001).
[PubMed]
109.
Wagner KD, Wagner N, Schedl A: The complex life of WT1. J Cell Sci 116:1653-1658 (2003).
110.
Wilhelm D, Martinson F, Bradford S, Wilson M, Combes A, et al: Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 287:111-124 (2005).
[PubMed]
111.
Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, et al: SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. J Biol Chem 282:10553-10560 (2007).
[PubMed]
112.
Yao H, Whoriskey W, Capel B: Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433-1440 (2002).
[PubMed]
113.
Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, et al: Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210-215 (2004).
[PubMed]
114.
Yao HH, Aardema J, Holthusen K: Sexually dimorphic regulation of inhibin beta B in establishing gonadal vasculature in mice. Biol Reprod 74:978-983 (2006).
[PubMed]
115.
Yoshimoto S, Ikeda N, Izutsu Y, Shiba T, Takamatsu N, et al: Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137:2519-2526 (2010).
[PubMed]
116.
Yu R, Ito M, Saunders T, Camper SA, Jameson J: Role of Ahch in gonadal development and gametogenesis. Nat Genet 20:353-357 (1998).
[PubMed]
117.
Zanaria E, Bardoni B, Dabovic B, Calvari V, Fraccaro M, et al: Xp duplications and sex reversal. Philos Trans R Soc Lond B Biol Sci 350:291-296 (1995).
You do not currently have access to this content.