The mammalian ovary shows extensive variation mainly in relation to the interstitial tissue of the ovary, the so-called interstitial gland, and the degree of gonad regionalisation, which implies the existence of a cortex and a medulla. Three mammalian species, mouse, human, and mole, have been reviewed here as representative animal models for ovarian variability. Whereas the human ovary may be considered to have a conventional pattern of development, the mouse and the mole represent the two extremes of the variation range. The mouse is exceptional among mammals because ovarian regionalisation is much less relevant than in other species. Contrarily, the mole ovary is very similar to that of humans regarding the cortical region, but shows a testis-like pattern of development in the medullary region. Thus, the mole ovary is in fact an ovotestis, a phenomenon also described in other mammals. Accordingly, current studies on the development of the mouse ovary are not sufficient to understand the process in a more general context, because ovarian organogenesis is exceptionally simple in the mouse. From an evolutionary perspective, mammals show a tendency to eliminate or reduce gonad regionalisation, in contrast with the situation in other vertebrates, where this trait has been preserved. Since developmental variants may not be associated with particular taxonomic groups, their origin seems to be adaptive rather than phylogenetic. The demonstration that gonad development is a rather plastic process in mammals helps to explain how some mammals could have evolved towards more primitive gonad developmental models in response to selective pressure.

1.
Aimé P: Recherches sur les cellules interstitielles de l’ovaire chez quelques mammifères. Arch Zool Exp Gen 4:95–143 (1907).
2.
Albrecht KH, Eicher EM: Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107 (2001).
3.
Barrionuevo FJ, Zurita F, Burgos M, Jiménez R: Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis. Dev Biol 268:39–52 (2004).
4.
Barske LA, Capel B: Blurring the edges in vertebrate sex determination. Curr Opin Genet Dev 18:499–505 (2008).
5.
Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, et al: The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913 (2000).
6.
Brennan J, Capel B: One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509–521 (2004).
7.
Burgoyne PS, Buehr M, McLaren A: XY follicle cells in ovaries of XX-XY female mouse chimaeras. Development 104:683–688 (1988).
8.
Capel B: The battle of the sexes. Mech Dev 92:89–103 (2000).
9.
Carmona FD, Motokawa M, Tokita M, Tsuchiya K, Jiménez R, et al: The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. J Exp Zool B Mol Dev Evol 310:259–266 (2008).
10.
Carmona FD, Lupiáñez DG, Martín JE, Burgos M, Jiménez R, et al: The spatio-temporal pattern of testis organogenesis in mammals – insights from the mole. Int J Dev Biol 53:1035–1044 (2009a).
11.
Carmona FD, Lupiáñez DG, Real FM, Burgos M, Zurita F, et al: SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. J Exp Zool B Mol Dev Evol 312:734–748 (2009b).
12.
Coveney D, Cool J, Oliver T, Capel B: Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci USA 105:7212–7217 (2008).
13.
Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR: Regulatory divergence modifies limb length between mammals. Genes Dev 22:141–151 (2008).
14.
DeFalco T, Capel B: Gonad morphogenesis in vertebrates: divergent means to a convergent end. Annu Rev Cell Dev Biol 25:457–482 (2009).
15.
DiNapoli L, Capel B: SRY and the standoff in sex determination. Mol Endocrinol 22:1–9 (2008).
16.
Edson MA, Nagaraja AK, Matzuk MM: The Mammalian ovary from genesis to revelation. Endocr Rev 30:624–712 (2009).
17.
Forbes TR: On the fate of the medullary cords of the human ovary. Carnegie Inst Wash Pub 541, Contrib Embryol 30:9–15 (1942).
18.
Fraenkel L: Vergleichend-histologische Untersuchungen über das Vorkommen drüsiger Formationen im interstitiellen Eierstocksgewebe. Archiv F Gynäk Bd 75 (1905).
19.
Gillman J: The development of the gonads in man, with a consideration of the role of fetal endocrines and the histogenesis of ovarian tumors. Contributions to Embryology, No. 210, pp. 83–131 (Carnegie Institution of Washington, Washington 1948).
20.
Gorman ML, Stone RD: The Natural History of Moles (Comstock Publishing Associates, Ithaca, NY 1990).
21.
Ishii N: Size and distribution of home ranges of the Japanese shrew-mole Urotrichus talpoides. J Mammal Soc Jpn 18:87–98 (1993).
22.
Janosik J: Histologisch-embryologische Untersuchungen über das Urogenitalsystem. Sitzungsber Kais Akad Wissensch Wien 91:97–199 (1885).
23.
Jiménez R, Burgos M, Sánchez A, Sinclair AH, Alarcón FJ, et al: Fertile females of the mole Talpa occidentalis are phenotypic intersexes with ovotestes. Development 118:1303–1311 (1993).
24.
Jost A: Recherches sur la differenciation sexuelle de l’embryon de lapin. Arch Anat Microsc Morphol Exp 36:271–315 (1947).
25.
Kanai Y, Kurohmaru M, Hayashi Y, Nishida T: Formation of male and female sex cords in gonadal development of C57BL/6 mouse. Nippon Juigaku Zasshi 51:7–16 (1989).
26.
Karl J, Capel B: Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333 (1998).
27.
Kim Y, Capel B: Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn 235:2292–2300 (2006).
28.
Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, et al: WT-1 is required for early kidney development. Cell 74:679–691 (1993).
29.
Lauge G: Development of the genitalia and analia, in Ransom R (ed.): Handbook of Drosophila Development, pp. 237–264 (Elsevier Biomedical Press, Amsterdam 1982).
30.
Luo X, Ikeda Y, Parker KL: A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490 (1994).
31.
MacLeod MJ: Contribution a l’étude de la structure de l’ovaire des mammifères. Arch Biol 1:241–282 (1880).
32.
Matthews LH: The oestrous cycle and intersexuality in the female mole (Talpa europaea Linn.). Proc Zool Soc Lond 2:347–383 (1935).
33.
Merchant H: Rat gonadal and ovarian organogenesis with and without germ cells. An ultrastructural study. Dev Biol 44:1–21 (1975).
34.
Merchant-Larios H, Ruiz-Ramirez S, Moreno-Mendoza N, Marmolejo-Valencia A: Correlation among thermosensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol 107:373–385 (1997).
35.
Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S: Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664 (1997).
36.
Mossman HW, Duke KL: Comparative morphology of the mammalian ovary (The University of Wisconsin Press, Madison 1973).
37.
Nabhan ZM, Lee PA: Disorders of sex development. Curr Opin Obstet Gynecol 19:440–445 (2007).
38.
Palmer SJ, Burgoyne PS: In situ analysis of fetal, prepuberal and adult XX-XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112:265–268 (1991a).
39.
Palmer SJ, Burgoyne PS: XY follicle cells in the ovaries of XO/XY and XO/XY/XYY mosaic mice. Development 111:1017–1019 (1991b).
40.
Pepling ME, Spradling AC: Female mouse germ cells form synchronously dividing cysts. Development 125:3323–3328 (1998).
41.
Peyre A: Recherches sur l’intersexualité spécifique chez Galemys pyrenaicus G. (Mammifère Insectivore). Arch Biol 73:1–174 (1962).
42.
Pinkerton JHM, McKay DG, Adams EC, Hertig AT: Development of the human ovary – a study using histochemical technics. Obstetr Gynecol 18:152–181 (1961).
43.
Popoff N: Le tissu interstitiel et les corps jaunes de I’ovaire. Arch Biol 26:483–556 (1911).
44.
Rubenstein NM, Cunha GR, Wang YZ, Campbell KL, Conley AJ: Variation in ovarian morphology in four species of New World moles with a peniform clitoris. Reproduction 126:713–719 (2003).
45.
Sánchez A, Bullejos M, Burgos M, Hera C, Stamatopoulos C, et al: Females of four mole species of genus Talpa (insectivora, mammalia) are true hermaphrodites with ovotestes. Mol Reprod Dev 44:289–294 (1996).
46.
Sekido R, Lovell-Badge R: Sex determination and SRY: down to a wink and a nudge? Trends Genet 25:19–29 (2009).
47.
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, et al: A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244 (1990).
48.
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, et al: The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271 (2009).
49.
Tourneaux F: Hermaphroditisme de la glande genital chez la Taupe adulte et localisation des cellules interstitielles dans le segment spermatique. Bibl Anat Suppl 49–53 (1904).
50.
Waldeyer H: Eierstock und Ei. Ein Beitrag zur Anatomie und Entwicklungsgeschichte der Sexualorgane (Engelmann, Leipzig 1870).
51.
Whitworth DJ, Licht P, Racey PA, Glickman SE: Testis-like steroidogenesis in the ovotestis of the European mole, Talpa europaea. Biol Reprod 60:413–318 (1999).
52.
Wilkins AS: The evolution of developmental pathways (Sinnauer Associates Inc. Sunderland 2002).
53.
Winiwarter H, Sainmont G: Nouvelles recherches sur l’ovogenèse et l’organogenèse de l’ovaire des mammifères (chat). Arch Biol 24:1–142 (1909).
54.
Witschi E: Embryogenesis of the adrenal and the reproductive glands. Recent Prog Horm Res 6:1–27 (1951).
55.
Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, et al: Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139:61–72 (2009).
56.
Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, et al: Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210–215 (2004).
57.
Zurita F, Carmona FD, Lupiáñez DG, Barrionuevo FJ, Guioli S, et al: Meiosis onset is postponed to postnatal stages during ovotestis development in female moles. Sex Dev 1:66–76 (2007).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.