The speciose insect order Lepidoptera (moths and butterflies) and their closest relatives, Trichoptera (caddis flies), share a female-heterogametic sex chromosome system. Originally a Z/ZZ (female/male) system, it evolved by chromosome rearrangement to a WZ/ZZ (female/male) system in the most species-rich branch of Lepidoptera, a monophyletic group consisting of Ditrysia and Tischeriina, which together comprise more than 98% of all species. Further sporadic rearrangements created multi-sex chromosome systems; sporadic losses of the W changed the system formally back to Z/ZZ in some species. Primary sex determination depends on a Z-counting mechanism in Z/ZZ species, but on a female-determining gene, Fem, in the W chromosome of the silkworm. The molecular mechanism is unknown in both cases. The silkworm shares the last step, dsx, of the hierarchical sex-determining pathway with Drosophila and other insects investigated, but probably not the intermediate steps between the primary signal and dsx. The W chromosome is heterochromatic in most species. It contains few genes and is flooded with interspersed repetitive elements. In interphase nuclei of females it is readily discernible as a heterochromatic body which grows with increasing degree of polyploidy in somatic cells. It is used as a marker for the genetic sex in studies of intersexes and Wolbachia infections. The sex chromosome system is being exploited in economically important species. Special strains have been devised for mass rearing of male-only broods in the silkworm for higher silk production and in pest species for the release of sterile males in pest management programs.

1.
Abe H, Mita K, Oshiki T, Shimada T: Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res 110:144–151 (2005a).
2.
Abe H, Seki M, Ohbayashi F, Tanaka N, Yamashita J, et al: Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori. Insect Mol Biol 14:339–352 (2005b).
3.
Andolfatto P, Scriber JM, Charlesworth B: No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution 57:305–316 (2003).
4.
Banno Y, Kawaguchi Y, Koga Y, Doira H: Chromosomal features at different meiotic stages during spermatogenesis in Bombyx mori. Sericologia 36:51–57 (1996).
5.
Bateson W, Punnet R: The inheritance of the peculiar pigmentation of the silky fowl. J Genetics 1:185–203 (1911).
6.
Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, et al: Extraordinary flux in sex ratio. Science 317:214 (2007).
7.
Charlesworth B: Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci USA 75:5618–5622 (1978).
8.
Charlesworth B: The effect of background selection against deleterious alleles on weakly selected, linked variants. Genet Res 63:213–228 (1994).
9.
Cline T, Meyer B: Vive la différence: males vs females in flies vs worms. Annu Rev Genet 30:637–702 (1996).
10.
Doncaster L, Raynor GH: On breeding experiments with Lepidoptera. Proc Zool Soc Lond 1:125–133 (1906).
11.
Dopman EB, Bogdanowicz SM, Harrison RG: Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis). Genetics 167:301–309 (2004).
12.
Dopman EB, Pérez L, Bogdanowicz SM, Harrison RG: Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proc Natl Acad Sci USA 102:14706–14711 (2005).
13.
Dyson EA, Kamath MK, Hurst GD: Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera; Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88:166–171 (2002).
14.
Ennis TJ: Sex chromatin and chromosome numbers in Lepidoptera. Can J Genet Cytol 18:119–130 (1976).
15.
Fuková I, Nguyen P, Marec F: Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48:1083–1092 (2005).
16.
Fuková I, Traut W, Vítková M, Nguyen P, Kubičková S, Marec F: Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116:135–145 (2007).
17.
Gage LP: Polyploidization of the silk gland. J Mol Biol 86:97–108 (1974).
18.
Glover T, Campbell M, Robbins P, Roelofs W: Sex-linked control of sex-pheromone behavioral responses in European corn borer moths (Ostrinia nubilalis) confirmed with TPI marker gene. Arch Insect Biochem Physiol 15:67–77 (1990).
19.
Goldschmidt R: Lymantria. Bibliographia Genetica 11:1–186 (1934).
20.
Goldsmith MR, Shimada T, Abe H: The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100 (2005).
21.
Gotter AL, Levine JD, Reppert SM: Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromosomes. Neuron 24:953–965 (1999).
22.
Grimaldi DA, Engel MS: Evolution of the Insects (Cambridge University Press, New York 2005).
23.
Guelin M: Données préliminaires sur l’existence de vésicules chromatiennes différenciées dans les noyaux des trophocytes d’Ephestia kühniella (Lepidoptera). C R Acad Sci Paris, Sciences de la vie 266:1740–1742 (1968).
24.
Guelin M: Activité de l’étérochromatine sexuelle-W et accumulation du nuage dans les cellules nourricières du Lépidoptère Ephestia. C R Acad Sci Paris, Sciences de la vie 317:54–61 (1994).
25.
Hiroki M, Kato Y, Kamito T, Miura K: Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften 89:167–170 (2002).
26.
Hodgkin J: Exploring the envelope: Systematic alteration in the sex-determination system of the nematode Caenorhabditis elegans. Genetics 162:767–780 (2002).
27.
Jiggins CD, Mavarez J, Beltran M, McMillan WO, Johnston JS, Bermingham E: A genetic linkage map of the mimetic butterfly Heliconius melpomene. Genetics 171:557–570 (2005).
28.
Johnson MS, Turner JRG: Absence of dosage compensation for a sex-linked enzyme in butterflies (Heliconius). Heredity 43:71–77 (1979).
29.
Kageyama D, Traut W: Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc R Soc Lond B 271:251–258 (2004).
30.
Kawamura N: The egg size determining gene, Esd, is a unique morphological marker on the W chromosome of Bombyx mori. Genetica 76:195–201 (1988).
31.
Kawamura N: Is the egg size determining gene, Esd, on the W chromosome identical with the sex-linked giant egg gene, Ge, in the silkworm? Genetica 81:205–210 (1990).
32.
Kawamura N, Niino T: Identification of the Z-W bivalent in the silkworm, Bombyx mori. Genetica 83:121–123 (1991).
33.
Klingstedt H: Digametie bei Weibchen der Trichoptere Limnophilus decipiens Kol. Acta Zoologica Fennica 10:1–69 (1931).
34.
Kristensen NP, Skalski AW: Phylogeny and paleontology, in: Kristensen NP (ed) Handbuch der Zoologie, Volume 4, Part 35: Lepidoptera, Moths and Butterflies, vol 1, pp 7–25 (de Gruyter, New York 1999).
35.
Kühn A: Über eine geschlechtsgekoppelte Mutation des Zeichnungsmusters (dz) bei Ephestia kühniella Z. Biol Zbl 59:347–357 (1939).
36.
Lukhtanov VA: Sex chromatin and sex chromosome systems in non-ditrysian Lepidoptera (Insecta). J Zool Syst Evol Res 38:73–79 (2000).
37.
Maeda T: Chiasma studies in the silkworm Bombyx mori. Jap J Genet 15:118–127 (1939).
38.
Makee H, Tafesh N: Sex chromatin body as a marker of radiation-induced sex chromosome aberrations in the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J Pest Sci 79:75–82 (2006).
39.
Marec F: Genetic control of pest Lepidoptera: Construction of a balanced lethal strain in Ephestia kuehniella. Entomol Exp Appl 61:271–283 (1991).
40.
Marec F, Novák K: Absence of sex chromatin correponds with a sex-chromosome univalent in females of Trichoptera. Eur J Entomol 95:197–209 (1998).
41.
Marec F, Traut W: Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera). Genome 37:426–435 (1994).
42.
Marec F, Kollárová I, Pavelka J: Radiation-induced inherited sterility combined with a genetic sexing system in Ephestia kuehniella (Lepidoptera: Pyralidae). Ann Entomol Soc Am 92:250–259 (1999).
43.
Marec F, Tothová A, Sahara K, Traut W: Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity 87:659–671 (2001).
44.
Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, et al: Development of genetic sexing strains in Lepidoptera: From traditional to transgenic approaches. J Econ Entomol 98:248–259 (2005).
45.
Marec F, Neven LG, Fukova I: Developing transgenic sexing strains for the release of non-transgenic sterile male codling moths Cydia pomonella, in: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-Wide Control of Insect Pests: From Research to Field Implementation, pp 103–111 (Springer, Dordrecht 2007).
46.
McAllister BF, McVean GAT: Neutral evolution of the sex-determining gene transformer in Drosophila. Genetics 154:1711–1720 (2000).
47.
Mediouni J, Fuková I, Frydychová R, Dhouibi MH, Marec F: Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57:184–194 (2004).
48.
Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, et al: The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35 (2004).
49.
Mosbacher GC: Die Intersexualität bei Lymantria dispar L. (Lepidoptera). Z Morphol Tiere 76:1–96 (1973).
50.
Mosbacher GC: Sex specific cell differentiation in different types of intersexes of Lymantria dispar L., in: Reinboth R (ed) Intersexuality in the Animal Kingdom, pp 146–157 (Springer-Verlag, Berlin 1975).
51.
Mosbacher GC, Scheffler HJ: Sex specific differentiation of somatic cells in intersexes of Lymantria dispar L. (Lepidoptera). Verh Dtsch Zool Ges 1974:324–329 (1975).
52.
Mosbacher C, Traut W: Geschlechtschromatin beim Schwammspinner Lymantria dispar und bei der Mehlmotte Ephestia kuehniella (Lepidoptera). Naturwissenschaften 55:349–350 (1968).
53.
Muller HJ: The relation of recombination to mutational advance. Mutat Res 1:2–9 (1964).
54.
Nagaraju J: Sex determination and sex-limited traits in the silkworm, Bombyx mori; their application in sericulture. Indian J Seric 35:83–89 (1996).
55.
Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J: Hybrid sterility, Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genetics 161:1517–1526 (2002).
56.
Narbel-Hofstetter M: Cytologie comparée de l’espèce parthénogénétique Luffia ferchaultella Steph. et l’espèce bisexuée L. lapidella Goeze (Lepidoptera, Psychidae). Chromosoma 12:505–552 (1961).
57.
Niimi T, Sahara K, Oshima H, Yasukochi Y, Ikeo K, Traut W: Molecular cloning and chromosomal localisation of the Bombyx Sex-lethal gene. Genome 49:263–268 (2006).
58.
Nilsson N-O, Löfstedt C, Dävring L: Unusual sex chromosome inheritance in six species of small hermine moths (Yponomeuta, Yponomeutidae, Lepidoptera). Hereditas 108:259–265 (1988).
59.
Niu B-L, Meng Z-Q, Tao Y-Z, Lu S-L, Weng H-B, et al: Cloning and alternative splicing analysis of Bombyx mori transformer-2 gene using silkworm EST database. Acta Biochim Biophys Sin 37:728–736 (2005).
60.
Nokkala S: Cytological characteristics of chromosome behaviour during female meiosis in Sphinx ligustri L. (Sphingidae, Lepidoptera). Hereditas 106:169–179 (1987).
61.
Ohbayashi F, Suzuki MG, Mita K, Okano K, Shimada T: A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 128:145–158 (2001).
62.
Ohnuma A: Synthesis of a balanced sex-linked lethal strain in the silkworm (in Japanese). Rep Silk Sci Res Inst Tokyo 36:17–25 (1988).
63.
Ohnuma A: Establishment of the practical male-rearing technology by a balanced sex-linked lethal (in Japanese). J Seric Sci Jpn 74:81–87 (2005).
64.
Ohnuma A: The history of the development of male-rearing silkworm strain, Bombyx mori (in Japanese). Rep J Dainippon Silk Found 54:1–10 (2006).
65.
Ohnuma A, Tazima Y: A new method of balanced sex-linked lethals in the silkworm with use of translocations between W and the fifth chromosomes (in Japanese). J Seric Sci Jpn 52:133–140 (1983).
66.
Papanicolaou A, Joron M, McMillan WO, Blaxter ML, Jiggins CD: Genomic tools and cDNA derived markers for butterflies. Mol Ecol 14:2883–2897 (2005).
67.
Rasmussen SW: The meiotic prophase of Bombyx mori analyzed by three-dimensional reconstructions of synaptonemal complexes. Chromosoma 42:245–293 (1976).
68.
Rasmussen SW: The transformation of the synaptonemal complex into the ‘elimination chromatin’ in Bombyx mori oocytes. Chromosoma 60:205–221 (1977).
69.
Rathjens B: Zur Funktion des W-Chromatins bei Ephestia kuehniella (Lepidoptera). Isolierung und Charakterisierung von W-Chromatin-Mutanten. Chromosoma 47:21–44 (1974).
70.
Rice WR: Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116:161–167 (1987).
71.
Ris H, Kleinfeld R: Cytochemical studies on the chromatin elimination in Solenobia (Lepidoptera). Chromosoma 5:363–371 (1952).
72.
Rishi S, Sahni G, Rishi KK: Inheritance of unusual sex chromosome evidenced by AAWZ trivalent in Trabala vishnu (Lasiocampidae, Lepidoptera). Cytobios 100:85–94 (1999).
73.
Robinson R: Lepidoptera Genetics (Pergamon Press, Oxford 1971).
74.
Sahara K, Yamada T, Saitoh H, Nakada T, Asano S, et al: Survival rate and egg feature of first filial (F1) tetrapoid silkworms from tetraploid parents (in Japanese). J Seric Sci Japan 66:341–345 (1997).
75.
Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, et al: W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48–55 (2003a).
76.
Sahara K, Marec F, Eickhoff U, Traut W: Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome 46:339–342 (2003b).
77.
Sakamoto H, Kageyama D, Hoshizaki S, Ishikawa Y: Sex-specific death in the Asian corn borer moth (Ostrinia furnacalis) infected with Wolbachia occours across larval development. Genome 50:645–652 (2007).
78.
Schulz H-J, Traut W: The pachytene complement of the wildtype and a chromosome mutant strain of the flour moth, Ephestia kuehniella (Lepidoptera). Genetica 50:61–66 (1979).
79.
Scriber JM, Hagen RH, Lederhouse RC: Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae). Evolution 50:222–236 (1996).
80.
Seiler J: Das Verhalten der Geschlechtschromosomen bei Lepidopteren. Nebst einem Beitrag zur Kenntnis der Eireifung, Samenreifung und Befruchtung. Arch Zellforsch 13:159–269 (1914).
81.
Seiler J: Geschlechtschromosomenuntersuchungen an Psychiden. I. Experimentelle Beeinflussung der geschlechtsbestimmenden Reifeteilung bei Talaeporia tubulosa Retz. Arch Zellforsch 15:249–268 (1920).
82.
Seiler J: Zytologische Vererbungsstudien an Schmetterlingen. I. Ergebnisse aus Kreuzungen von Schmetterlingsrassen mit verschiedener Chromosomenzahl. Arch Julius Klaus-Stiftung für Vererbungs-Forschung 1:63–117 (1925).
83.
Seiler J: Das Intersexualitätsphänomen. Zusammenfassende Darstellung des Beobachtungsmaterials an Solenobia triquetrella (Lepid. Psychidae) und Deutungsversuch. Experientia 5:425–438 (1949).
84.
Seiler J: Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F. R. (Lepidoptera, Psychidae) I. Mitteilung. Die Zytologie der bisexuellen S. triquetrella, ihr Verhalten und ihr Sexualverhältnis. Chromosoma 10:73–114 (1959).
85.
Seiler J: Sexuality as developmental process, in: Geerts SJ (ed) Genetics Today. Proc XI Int Congr Genetics. The Hague, 1963, vol 2., pp 199–207 (Pergamon, Oxford 1965).
86.
Sorsa M, Suomalainen E: Electron microscopy of chromatin elimination in Cidaria (Lepidoptera). Hereditas 80:35–40 (1975).
87.
Sperling FAH: Sex-linked genes and species differences in Lepidoptera. The Canadian Entomologist 126:807–818 (1994).
88.
Starr DJ, Cline TW: A host-parasite interaction rescues Drosophila oogenesis defects. Nature 418:76–79 (2002).
89.
Strunnikov VA: Sex control in the silkworms. Nature 255:111–113 (1975).
90.
Strunnikov VA: Genetic methods of selection and sex control in the silkworm. (in Russian). Agropromizdat, Moskva 1987.
91.
Sturtevant AH: Linkage in the silkworm moth. Am Nat 48:315–317 (1915).
92.
Suomalainen E: On the chromosomes of the geometrid moth genus Cidaria. Chromosoma 16:166–184 (1965).
93.
Suomalainen E: Achiasmatische Oogenese bei Trichopteren. Chromosoma 18:201–207 (1966).
94.
Suomalainen E: On the sex chromosome trivalent in some Lepidoptera females. Chromosoma 28:298–308 (1969).
95.
Suzuki MG, Shimada T, Kobayashi M: Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori. Heredity 81:275–283 (1998).
96.
Suzuki MG, Shimada T, Kobayashi M: Bm kettin, homologue of the Drosophilakettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated. Heredity 82:170–179 (1999).
97.
Suzuki MG, Ohbayashi F, Mita K, Shimada T: The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem Mol Biol 31:1201–1211 (2001).
98.
Tazima Y: The genetics of the silkworm (Academic Press, London 1964).
99.
Tobler A, Kapan D, Flanagan NS, Gonzalez C, Peterson E, Jet al: First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity 94:408–417 (2005).
100.
Traut W: Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58:275–284 (1976).
101.
Traut W: A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 47:135–142 (1977).
102.
Traut W, Clarke CA: Cytogenetics of a moth species with a low chromosome number, Orgyia thyellina. Hereditas 125:277–283 (1996).
103.
Traut W, Clarke CA: Karyotype evolution by chromosome fusion in the moth genus Orgyia. Hereditas 126:77–84 (1997).
104.
Traut W, Marec F: Sex chromatin in Lepidoptera. Quart Rev Biol 71:239–256 (1996).
105.
Traut W, Marec F: Sex chromosome differentiation in some species of Lepidoptera (Insecta). Chromosome Res 5:283–291 (1997).
106.
Traut W, Mosbacher C: Geschlechtschromatin bei Lepidopteren. Chromosoma 25:343–356 (1968).
107.
Traut W, Rathjens B: Das W-Chromosom von Ephestia kuehniella (Lepidoptera) und die Ableitung des Geschlechtschromatins. Chromosoma 41:437–446 (1973).
108.
Traut W, Scholz D: Structure, replication and transcriptional activity of the sex-specific heterochromatin in a moth. Exp Cell Res 113:85–94 (1978).
109.
Traut W, Weith A, Traut G: Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera). Genetica 70:69–79 (1986).
110.
Traut W, Sahara K, Otto TD, Marec F: Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180 (1999).
111.
Traut W, Eickhof U, Schorch J-C: Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH). Methods Cell Sci 23:157–163 (2001).
112.
Traut W, Niimi T, Ikeo K, Sahara K: Phylogeny of the sex-determining gene Sex-lethal in insects. Genome 49:254–262 (2006).
113.
Vítková M, Fuková I, Kubičková S, Marec F: Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res 15:917–930 (2007).
114.
Weith A, Traut W: Synaptonemal complexes with associated chromatin in a moth, Ephestia kuehniella Z. The fine structure of the W chromosomal heterochromatin. Chromosoma 78:275–291 (1980).
115.
Weith A, Traut W: Synaptic adjustment, non-homologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuehniella (Insecta, Lepidoptera). Chromosoma 94:125–131 (1986).
116.
Wolf KW, Joshi HC: Distribution of gamma-tubulin differs in primary and secondary oocytes of Ephestia kuehniella (Pyralidae, Lepidoptera). Mol Reprod Dev 45:225–230 (1996).
117.
Xia Q, Zhou Z, Lu C, Cheng D, Dai F, et al: A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940 (2004).
118.
Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K: A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics 173:1319–1328 (2006).
119.
Yoshido A, Marec F, Sahara K: Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma 114:193–202 (2005a).
120.
Yoshido A, Bando H, Yasukochi Y, Sahara K: The Bombyx mori karyotype and the assignment of linkage groups. Genetics 170:675–685 (2005b).
121.
Yoshido A, Yamada Y, Sahara K: The W chromosome detection in several lepidopteran species by genomic in situ hybridization (GISH). J Insect Biotech Sericol 75:147–151 (2006).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.