Introduction: Emulsifiers are common excipients in dermal products stabilizing formulations such as creams and emulsions. But due to their potential for skin irritation, emulsifiers for pharmaceutical use should be tested regarding their tolerability before introducing them to the skin of patients. In this study, a systematic investigation with six oil in water-emulsifiers was performed on the forearms of 12 healthy human volunteers, six female, and six male. Methods: We analyzed the effects of pharmaceutical emulsifiers on the macroscopic skin health parameters measured as trans-epidermal water loss (TEWL) and skin hydration and measured the ceramide profile of the treated skin sites using liquid chromatography coupled to mass spectrometry in order to assess the skin tolerability of the investigated emulsifiers. In a second step, a Partial Least Squares Regression was employed to investigate relationships between changes in the ceramide profile to changes in the TEWL of skin treated with a nonionic as well as an anionic emulsifier. Results: Skin health measurements showed that the applied emulsifiers inflicted no significant changes compared to the water-treated sample, demonstrating a remarkable skin tolerability. The employed regression model showed a good fit as well as adequate prediction and identified ceramide species associated with impaired skin barrier function. Furthermore, it was found that the relationship between the ceramide profile and the skin barrier function in emulsifier-induced skin damage shows distinct similarities to the interplay of ceramides and skin barrier function in lesional skin linked to atopic dermatitis, hinting toward a common underlying mechanism and opening up possibilities to simulate disease-related changes to the skin for the development of skin damage models. Conclusion: In conclusion, these detailed investigations yield insight into possible mechanisms of emulsifier-induced skin damage and show its versatility in the investigation of pharmaceutical emulsifiers for formulation development as well as basic research.

1.
Elias
PM
.
Stratum corneum defensive functions: an integrated view
.
J Invest Dermatol
.
2005
;
125
(
2
):
183
200
.
2.
Menon
GK
,
Cleary
GW
,
Lane
ME
.
The structure and function of the stratum corneum
.
Int J Pharm
.
2012
;
435
(
1
):
3
9
.
3.
van Smeden
J
,
Janssens
M
,
Gooris
GS
,
Bouwstra
JA
.
The important role of stratum corneum lipids for the cutaneous barrier function
.
Biochim Biophys Acta
.
2014
;
1841
(
3
):
295
313
.
4.
Wertz
PW
,
van den Bergh
B
.
The physical, chemical and functional properties of lipids in the skin and other biological barriers
.
Chem Phys Lipids
.
1998
;
91
(
2
):
85
96
.
5.
Feingold
KR
,
Elias
PM
.
Role of lipids in the formation and maintenance of the cutaneous permeability barrier
.
Biochim Biophys Acta
.
2014
;
1841
(
3
):
280
94
.
6.
Beddoes
CM
,
Gooris
GS
,
Barlow
DJ
,
Lawrence
MJ
,
Dalgliesh
RM
,
Malfois
M
, et al
.
The importance of ceramide headgroup for lipid localisation in skin lipid models
.
Biochim Biophys Acta Biomembr
.
2022
;
1864
(
6
):
183886
.
7.
Berkers
T
,
Visscher
D
,
Gooris
GS
,
Bouwstra
JA
.
Topically applied ceramides interact with the stratum corneum lipid matrix in compromised ex vivo skin
.
Pharm Res
.
2018
;
35
(
3
):
48
.
8.
Ge
F
,
Sun
K
,
Hu
Z
,
Dong
X
.
Role of omega-hydroxy ceramides in epidermis: biosynthesis, barrier integrity and analyzing method
.
Int J Mol Sci
.
2023
;
24
(
5
):
5035
.
9.
Groen
D
,
Poole
DS
,
Gooris
GS
,
Bouwstra
JA
.
Investigating the barrier function of skin lipid models with varying compositions
.
Eur J Pharm Biopharm
.
2011
;
79
(
2
):
334
42
.
10.
Lee
J-Y
,
Jeon
S
,
Han
S
,
Liu
K-H
,
Cho
Y
,
Kim
K-P
.
Positive correlation of triacylglycerols with increased chain length and unsaturation with ω-O-acylceramide and ceramide-NP as well as acidic pH in the skin surface of healthy Korean adults
.
Metabolites
.
2022
;
13
(
1
):
31
.
11.
Kawana
M
,
Miyamoto
M
,
Ohno
Y
,
Kihara
A
.
Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS
.
J Lipid Res
.
2020
;
61
(
6
):
884
95
.
12.
Łuczaj
W
,
Wroński
A
,
Domingues
P
,
Domingues
MR
,
Skrzydlewska
E
.
Lipidomic analysis reveals specific differences between fibroblast and keratinocyte ceramide profile of patients with psoriasis vulgaris
.
Molecules
.
2020
;
25
(
3
):
630
.
13.
Łuczaj
W
,
Jastrząb
A
,
do Rosário Domingues
M
,
Domingues
P
,
Skrzydlewska
E
.
Changes in phospholipid/ceramide profiles and eicosanoid levels in the plasma of rats irradiated with UV rays and treated topically with cannabidiol
.
Int J Mol Sci
.
2021
;
22
(
16
):
8700
.
14.
Vávrová
K
,
Kováčik
A
,
Opálka
L
.
Ceramides in the skin barrier
.
Eur Pharmaceut J
.
2017
;
64
(
2
):
28
35
.
15.
Wertz
PW
.
Linoleate-containing acylglucosylceramide, acylceramide, and events associated with formation of the epidermal permeability barrier
.
Skin Pharmacol Physiol
.
2023
;
36
(
5
):
225
34
.
16.
Kessner
D
,
Ruettinger
A
,
Kiselev
MA
,
Wartewig
S
,
Neubert
RHH
.
Properties of ceramides and their impact on the stratum corneum structure: part 2 – stratum corneum lipid model systems
.
Skin Pharmacol Physiol
.
2008
;
21
(
2
):
58
74
.
17.
Novotný
J
,
Janůsová
B
,
Novotný
M
,
Hrabálek
A
,
Vávrová
K
.
Short-chain ceramides decrease skin barrier properties
.
Skin Pharmacol Physiol
.
2009
;
22
(
1
):
22
30
.
18.
Shin
K-O
,
Ishida
K
,
Mihara
H
,
Choi
Y
,
Park
J-H
,
Park
S-H
, et al
.
Diesel particulate matter permeation into normal human skin and intervention using a topical ceramide formulation
.
Skin Pharmacol Physiol
.
2024
;
37
(
1–3
):
32
9
.
19.
Altgilbers
S
,
Rippke
F
,
Filbry
A
,
Conzelmann
S
,
Vietzke
JP
,
Burkhardt
T
, et al
.
A biomimetic combination of actives enhances skin hydration and barrier function via modulation of gene expression: results of two double-blind, vehicle-controlled clinical studies
.
Skin Pharmacol Physiol
.
2022
;
35
(
2
):
102
11
.
20.
Lim
SH
,
Kim
EJ
,
Lee
CH
,
Park
GH
,
Yoo
KM
,
Nam
SJ
, et al
.
A lipid mixture enriched by ceramide NP with fatty acids of diverse chain lengths contributes to restore the skin barrier function impaired by topical corticosteroid
.
Skin Pharmacol Physiol
.
2022
;
35
(
2
):
112
23
.
21.
Motta
S
,
Monti
M
,
Sesana
S
,
Caputo
R
,
Carelli
S
,
Ghidoni
R
.
Ceramide composition of the psoriatic scale
.
Biochim Biophys Acta
.
1993
;
1182
(
2
):
147
51
.
22.
Yokose
U
,
Ishikawa
J
,
Morokuma
Y
,
Naoe
A
,
Inoue
Y
,
Yasuda
Y
, et al
.
The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation
.
BMC Dermatol
.
2020
;
20
(
1
):
6
.
23.
Merleev
AA
,
Le
ST
,
Alexanian
C
,
Toussi
A
,
Xie
Y
,
Marusina
AI
, et al
.
Biogeographic and disease-specific alterations in epidermal lipid composition and single-cell analysis of acral keratinocytes
.
JCI Insight
.
2022
;
7
(
16
):
e159762
.
24.
Lavrijsen
APM
,
Bouwstra
JA
,
Gooris
GS
,
Weerheim
A
,
Boddé
HE
,
Ponec
M
.
Reduced skin barrier function parallels abnormal stratum corneum lipid organization in patients with lamellar ichthyosis
.
J Invest Dermatol
.
1995
;
105
(
4
):
619
24
.
25.
Eckl
K-M
,
Tidhar
R
,
Thiele
H
,
Oji
V
,
Hausser
I
,
Brodesser
S
, et al
.
Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length
.
J Invest Dermatol
.
2013
;
133
(
9
):
2202
11
.
26.
Di Nardo
A
,
Wertz
P
,
Giannetti
A
,
Seidenari
S
.
Ceramide and cholesterol composition of the skin of patients with atopic dermatitis
.
Acta Derm Venereol
.
1998
;
78
(
1
):
27
30
.
27.
Joo
K-M
,
Hwang
J-H
,
Bae
S
,
Nahm
D-H
,
Park
H-S
,
Ye
Y-M
, et al
.
Relationship of ceramide–, and free fatty acid–cholesterol ratios in the stratum corneum with skin barrier function of normal, atopic dermatitis lesional and non-lesional skins
.
J Dermatol Sci
.
2015
;
77
(
1
):
71
4
.
28.
Ishikawa
J
,
Narita
H
,
Kondo
N
,
Hotta
M
,
Takagi
Y
,
Masukawa
Y
, et al
.
Changes in the ceramide profile of atopic dermatitis patients
.
J Invest Dermatol
.
2010
;
130
(
10
):
2511
4
.
29.
Sho
Y
,
Sakai
T
,
Sato
T
,
Sonezaki
M
,
Taima
H
,
Taguchi
H
, et al
.
Stratum corneum ceramide profiles provide reliable indicators of remission and potential flares in atopic dermatitis
.
J Invest Dermatol
.
2022
;
142
(
12
):
3184
91.e7
.
30.
Janssens
M
,
van Smeden
J
,
Gooris
GS
,
Bras
W
,
Portale
G
,
Caspers
PJ
, et al
.
Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients
.
J Lipid Res
.
2012
;
53
(
12
):
2755
66
.
31.
Sahle
FF
,
Gebre-Mariam
T
,
Dobner
B
,
Wohlrab
J
,
Neubert
RH
.
Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy
.
Skin Pharmacol Physiol
.
2015
;
28
(
1
):
42
55
.
32.
Imokawa
G
,
Abe
A
,
Jin
K
,
Higaki
Y
,
Kawashima
M
,
Hidano
A
.
Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin
.
J Invest Dermatol
.
1991
;
96
(
4
):
523
6
.
33.
Simonsen
L
,
Fullerton
A
.
Development of an in vitro skin permeation model simulating atopic dermatitis skin for the evaluation of dermatological products
.
Skin Pharmacol Physiol
.
2007
;
20
(
5
):
230
6
.
34.
Elias
PM
,
Wakefield
JS
,
Man
MQ
.
Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis
.
Skin Pharmacol Physiol
.
2019
;
32
(
1
):
1
7
.
35.
Tessema
EN
,
Gebre-Mariam
T
,
Neubert
RHH
,
Wohlrab
J
.
Potential applications of phyto-derived ceramides in improving epidermal barrier function
.
Skin Pharmacol Physiol
.
2017
;
30
(
3
):
115
38
.
36.
di Nardo
A
,
Sugino
K
,
Wertz
P
,
Ademola
J
,
Maibach
HI
.
Sodium Lauryl Sulfate (SLS) induced irritant contact dermatitis: a correlation study between ceramides and in vivo parameters of irritation
.
Contact Dermat
.
1996
;
35
(
2
):
86
91
.
37.
Imokawa
G
,
Akasaki
S
,
Minematsu
Y
,
Kawai
M
.
Importance of intercellular lipids in water-retention properties of the stratum corneum: induction and recovery study of surfactant dry skin
.
Arch Dermatol Res
.
1989
;
281
(
1
):
45
51
.
38.
Takagi
Y
,
Nakagawa
H
,
Higuchi
K
,
Imokawa
G
.
Characterization of surfactant-induced skin damage through barrier recovery induced by pseudoacylceramides
.
Dermatology
.
2005
;
211
(
2
):
128
34
.
39.
Schoenfelder
H
,
Liu
Y
,
Lunter
DJ
.
Systematic investigation of factors, such as the impact of emulsifiers, which influence the measurement of skin barrier integrity by in-vitro Trans-Epidermal Water Loss (TEWL)
.
Int J Pharm
.
2023
;
638
:
122930
.
40.
Park
S
,
Kim
J
,
Cho
SI
,
Kim
K
,
Cho
H
,
Park
C
, et al
.
Induction of a hardening phenomenon and quantitative changes of ceramides in stratum corneum
.
Ann Dermatol
.
2014
;
26
(
1
):
35
42
.
41.
Liu
Y
,
Lunter
DJ
.
Systematic investigation of the effect of non-ionic emulsifiers on skin by confocal Raman spectroscopy: a comprehensive lipid analysis
.
Pharmaceutics
.
2020
;
12
(
3
):
223
.
42.
Imokawa
G
.
Surfactant-induced depletion of ceramides and other intercellular lipids: implication for the mechanism leading to dehydration of the stratum corneum
.
Exog Dermatol
.
2005
;
3
(
2
):
81
98
.
43.
Froebe
CL
,
Simion
FA
,
Rhein
LD
,
Cagan
RH
,
Kligman
A
.
Stratum corneum lipid removal by surfactants: relation to in vivo irritation
.
Dermatologica
.
1990
;
181
(
4
):
277
83
.
44.
Fulmer
AW
,
Kramer
GJ
.
Stratum corneum lipid abnormalities in surfactant-induced dry scaly skin
.
J Invest Dermatol
.
1986
;
86
(
5
):
598
602
.
45.
Chen
Y
,
Liao
M
,
Ma
K
,
Wang
Z
,
Demé
B
,
Penfold
J
, et al
.
Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction
.
J Colloid Interface Sci
.
2022
;
608
(
Pt 1
):
405
15
.
46.
Seweryn
A
.
Interactions between surfactants and the skin: theory and practice
.
Adv Colloid Interface Sci
.
2018
;
256
:
242
55
.
47.
Imokawa
G
,
Sumura
K
,
Katsumi
M
.
Study on skin roughness caused by surfactants: II. Correlation between protein denaturation and skin roughness
.
J Am Oil Chem Soc
.
1975
;
52
(
12
):
484
9
.
48.
van Smeden
J
,
Boiten
WA
,
Hankemeier
T
,
Rissmann
R
,
Bouwstra
JA
,
Vreeken
RJ
.
Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes
.
Biochim Biophys Acta
.
2014
;
1841
(
1
):
70
9
.
49.
Suzuki
M
,
Ohno
Y
,
Kihara
A
.
Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases
.
J Lipid Res
.
2022
;
63
(
7
):
100235
.
50.
Mevik
B-H
,
Wehrens
R
.
Introduction to the pls package
. Help section of the “Pls” package of R studio software;
2015
. p.
1
23
.
51.
Boulesteix
A-L
,
Strimmer
K
.
Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
.
Brief Bioinform
.
2007
;
8
(
1
):
32
44
.
52.
Vater
C
,
Apanovic
A
,
Riethmüller
C
,
Litschauer
B
,
Wolzt
M
,
Valenta
C
, et al
.
Changes in skin barrier function after repeated exposition to phospholipid-based surfactants and sodium dodecyl sulfate in vivo and corneocyte surface analysis by atomic force microscopy
.
Pharmaceutics
.
2021
;
13
(
4
):
436
.
53.
Liu
Y
,
Ilić
T
,
Pantelic
I
,
Savić
S
,
Lunter
DJ
.
Topically applied lipid-containing emulsions based on PEGylated emulsifiers: formulation, characterization, and evaluation of their impact on skin properties ex vivo and in vivo
.
Int J Pharm
.
2022
;
626
:
122202
.
54.
Zhang
Z
,
Lunter
DJ
.
Confocal Raman microspectroscopy as an alternative method to investigate the extraction of lipids from stratum corneum by emulsifiers and formulations
.
Eur J Pharmaceutics Biopharmaceutics
.
2018
;
127
:
61
71
.
55.
Ananthapadmanabhan
KP
,
Mukherjee
S
,
Chandar
P
.
Stratum corneum fatty acids: their critical role in preserving barrier integrity during cleansing
.
Int J Cosmet Sci
.
2013
;
35
(
4
):
337
45
.
You do not currently have access to this content.