Introduction: Several olfactory receptors (ORs) are expressed in human skin, where they regulate skin pigmentation, barrier function, wound healing, and hair growth. Previously, we found that the selective activation of OR family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® differentially stimulates the expression of antimicrobial peptides (AMPs) in human scalp hair follicle epithelium ex vivo. As OR2AT4 is also expressed by epidermal keratinocytes, we hypothesized that it may modulate intraepidermal AMP synthesis, thereby contributing to skin microbiome management. Methods: We investigated this hypothesis in organ-cultured human skin in the presence of Sandalore® and antibiotics and evaluated epidermal production of two AMPs, LL37 (cathelicidin) and dermcidin (DCD), as well as OR2AT4, by quantitative immunohistomorphometry. Moreover, we quantified DCD secretion into the culture medium by ELISA and studied the effect of culture medium on selected bacterial and fungal strains. Results: Topical application of Sandalore®to organ-cultured human skin increased OR2AT4 protein expression, the number of DCD-positive intraepidermal cells, and DCD secretion into culture media, without significantly affecting epidermal LL37 expression. In line with the significantly increased secretion of DCD into the culture medium, we demonstrated, in a spectrophotometric assay, that application of conditioned media from Sandalore®-treated skin promotes Staphylococcus epidermidis, Malassezia restricta, and, minimally, Cutibacterium acnes and inhibits Staphylococcus aureus growth. Conclusion: In addition to demonstrating for the first time that DCD can be expressed by epidermal keratinocytes, our pilot study suggests that topical treatment of human skin with a cosmetic odorant (Sandalore®) has the potential to alter the composition of the human skin microbiome through the selective upregulation of DCD. If confirmed, Sandalore® could become an attractive adjuvant, nondrug treatment for dermatoses characterized by dysbiosis due to overgrowth of S. aureus and Malassezia, such as atopic dermatitis and seborrheic dermatitis.

1.
Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discov. 2019;18(2):116–38.
2.
Wojcik S, Weidinger D, Ständer S, Luger T, Hatt H, Jovancevic N. Functional characterization of the extranasal OR2A4/7 expressed in human melanocytes. Exp Dermatol. 2018 Nov;27(11):1216–23.
3.
Pavan B, Capuzzo A, Dalpiaz A. Potential therapeutic effects of odorants through their ectopic receptors in pigmented cells. Drug Discov Today. 2017 Jul;22(7):1123–30.
4.
Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, et al. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol. 2014 Nov;134(11):2823–32.
5.
Cheret J, Bertolini M, Ponce L, Lehmann J, Tsai T, Alam M, et al. Olfactory receptor OR2AT4 regulates human hair growth. Nat Commun. 2018 Sep;9(1):3624.
6.
Tsai T, Veitinger S, Peek I, Busse D, Eckardt J, Vladimirova D, et al. Two olfactory receptors-OR2A4/7 and OR51B5-differentially affect epidermal proliferation and differentiation. Exp Dermatol. 2017;26(1):58–65.
7.
Maßberg D, Hatt H. Human olfactory receptors: novel cellular functions outside of the nose. Physiol Rev. 2018 Jul;98(3):1739–63.
8.
Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013 Mar;110(11):4410–5.
9.
Verzeaux L, Richer S, Viguier J, Gofflo S, Boudier D, Aymard E, et al. Structure-function relationship between a natural cosmetic active ingredient and the olfactory receptor OR2AT4. Int J Cosmet Sci. 2019 Apr;41(2):194–9.
10.
Jimenez F, López E, Bertolini M, Alam M, Chéret J, Westgate G, et al. Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore®, improves telogen effluvium-associated parameters. J Cosmet Dermatol. 2021;20(3):784–91.
11.
Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides. 2010 Sep;31(9):1791–8.
12.
Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment. Am J Clin Dermatol. 2019 Jun;20(3):335–44.
13.
Matard B, Donay JL, Resche-Rigon M, Tristan A, Farhi D, Rousseau C, et al. Folliculitis decalvans is characterized by a persistent, abnormal subepidermal microbiota. Exp Dermatol. 2020;29(3):295–8.
14.
Pinto D, Calabrese FM, De Angelis M, Celano G, Giuliani G, Gobbetti M, et al. Predictive metagenomic profiling, urine metabolomics, and human marker gene expression as an integrated approach to study alopecia areata. Front Cell Infect Microbiol. 2020;10:146.
15.
Ho BS, Ho EXP, Chu CW, Ramasamy S, Bigliardi-Qi M, de Sessions PF, et al. Microbiome in the hair follicle of androgenetic alopecia patients. PLoS One. 2019 May;14(5):e0216330.
16.
Dagnelie MA, Montassier E, Khammari A, Mounier C, Corvec S, Dréno B. Inflammatory skin is associated with changes in the skin microbiota composition on the back of severe acne patients. Exp Dermatol. 2019 Aug;28(8):961–7.
17.
Findley K, Grice EA. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog. 2014 Nov;10(10):e1004436.
18.
Visser MJE, Kell DB, Pretorius E. Bacterial dysbiosis and translocation in psoriasis vulgaris. Front Cell Infect Microbiol. 2019;9:7.
19.
Wikramanayake TC, Borda LJ, Miteva M, Paus R. Seborrheic dermatitis-looking beyond Malassezia. Exp Dermatol. 2019;28(9):991–1001.
20.
Shimoda-Komatsu Y, Sato Y, Yamazaki Y, Takahashi R, Shiohara T. A novel method to assess the potential role of sweating abnormalities in the pathogenesis of atopic dermatitis. Exp Dermatol. 2018 Apr;27(4):386–92.
21.
Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005 Jun;174(12):8003–10.
22.
Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol. 2001 Dec;2(12):1133–7.
23.
Ma J, Xu S, Wang X, Zhang J, Wang Y, Liu M, et al. Noninvasive analysis of skin proteins in healthy Chinese subjects using an orbitrap fusion tribrid mass spectrometer. Skin Res Technol. 2019 Jul;25(4):424–33.
24.
Schittek B. The multiple facets of dermcidin in cell survival and host defense. J Innate Immun. 2012 Jun;4(4):349–60.
25.
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:281.
26.
Ryu S, Song PI, Seo CH, Cheong H, Park Y. Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci. 2014 May;15(5):8753–72.
27.
Niyonsaba F, Suzuki A, Ushio H, Nagaoka I, Ogawa H, Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br J Dermatol. 2009 Feb;160(2):243–9.
28.
Gherardini J, Wegner J, Chéret J, Ghatak S, Lehmann J, Alam M, et al. Transepidermal UV radiation of scalp skin ex vivo induces hair follicle damage that is alleviated by the topical treatment with caffeine. Int J Cosmet Sci. 2019 Apr;41(2):164–82.
29.
Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008 Aug;122(2):261–6.
30.
Afshar M, Gallo RL. Innate immune defense system of the skin. Vet Dermatol. 2013 Feb;24(1):32–e9.
31.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jun;9(7):676–82.
32.
Dahlhoff M, Zouboulis CC, Schneider MR. Expression of dermcidin in sebocytes supports a role for sebum in the constitutive innate defense of human skin. J Dermatol Sci. 2016 Feb;81(2):124–6.
33.
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, et al. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One. 2019;14(5):e0216249.
34.
Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol. 2004 Sep;151(3):534–9.
35.
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018 Mar;16(3):143–55.
36.
Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera acidipropionibacterium gen. nov., cutibacterium gen. nov. and pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016 Nov;66(11):4422–32.
37.
Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013 Mar;8(3):e58203.
38.
Tanaka A, Cho O, Saito C, Saito M, Tsuboi R, Sugita T. Comprehensive pyrosequencing analysis of the bacterial microbiota of the skin of patients with seborrheic dermatitis. Microbiol Immunol. 2016;60(8):521–6.
39.
Soares RC, Camargo-Penna PH, de Moraes VC, De Vecchi R, Clavaud C, Breton L, et al. Dysbiotic bacterial and fungal communities not restricted to clinically affected skin sites in dandruff. Front Cell Infect Microbiol. 2016 Nov;6:157.
40.
Tomczak H, Wróbel J, Jenerowicz D, Sadowska-Przytocka A, Wachal M, Adamski Z, et al. The role of Staphylococcus aureus in atopic dermatitis: microbiological and immunological implications. Postepy Dermatol Alergol. 2019 Aug;36(4):485–91.
41.
Adalsteinsson JA, Kaushik S, Muzumdar S, Guttman-Yassky E, Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol. 2020 May;29(5):481–9.
42.
Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014 May;14(5):433.
43.
Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011 Jul;242(1):233–46.
44.
Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, et al. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet. 2008 Jan;40(1):23–5.
45.
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007 Oct;449(7162):564–9.
46.
Casadei E, Tacchi L, Lickwar CR, Espenschied ST, Davison JM, Muñoz P, et al. Commensal bacteria regulate gene expression and differentiation in vertebrate olfactory systems through transcription factor REST. Chem Senses. 2019 17;44(8):615–30.
47.
Bianchi F, Flisi S, Careri M, Riboni N, Resimini S, Sala A, et al. Vertebrate odorant binding proteins as antimicrobial humoral components of innate immunity for pathogenic microorganisms. PLoS One. 2019;14(3):e0213545.
48.
Priori D, Colombo M, Clavenzani P, Jansman AJ, Lallès JP, Trevisi P, et al. The olfactory receptor OR51E1 is present along the gastrointestinal tract of pigs, co-localizes with enteroendocrine cells and is modulated by intestinal microbiota. PLoS One. 2015;10(6):e0129501.
49.
Lemoine L, Dieckmann R, Al Dahouk S, Vincze S, Luch A, Tralau T. Microbially competent 3D skin: a test system that reveals insight into host-microbe interactions and their potential toxicological impact. Arch Toxicol. 2020 Oct;94(10):3487–502.
50.
Claudel JP, Auffret N, Leccia MT, Poli F, Corvec S, Dréno B. Staphylococcus epidermidis: a potential new player in the physiopathology of acne? Dermatology. 2019;235(4):287–94.
51.
Paller AS, Kong HH, Seed P, Naik S, Scharschmidt TC, Gallo RL, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019 Jan;143(1):26–35.
52.
Di Domenico EG, Cavallo I, Capitanio B, Ascenzioni F, Pimpinelli F, Morrone A, et al. Staphylococcus aureus and the cutaneous microbiota biofilms in the pathogenesis of atopic dermatitis. Microorganisms. 2019 Aug;7(9):301.
53.
Pinto D, Sorbellini E, Marzani B, Rucco M, Giuliani G, Rinaldi F. Scalp bacterial shift in Alopecia areata. PLoS One. 2019 Apr;14(4):e0215206.
54.
Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010 May;465(7296):346–9.
55.
Jeong S, Kim HY, Kim AR, Yun CH, Han SH. Propionate ameliorates Staphylococcus aureus skin infection by attenuating bacterial growth. Front Microbiol. 2019;10:1363.
56.
Paulmann M, Arnold T, Linke D, Özdirekcan S, Kopp A, Gutsmann T, et al. Structure-activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. J Biol Chem. 2012 Mar;287(11):8434–43.
57.
Lew LC, Liong MT. Bioactives from probiotics for dermal health: functions and benefits. J Appl Microbiol. 2013 May;114(5):1241–53.
58.
Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018 May;10(3):207–15.
59.
Clausen ML, Slotved HC, Krogfelt KA, Andersen PS, Agner T. In vivo expression of antimicrobial peptides in atopic dermatitis. Exp Dermatol. 2016 Jan;25(1):3–9.
You do not currently have access to this content.