Introduction: The use of epicutaneously applied permethrin in the treatment of common scabies is considered to be the first-line therapy. Due to increasing clinical treatment failure, the development of genetic resistance to permethrin in Sarcoptes scabiei var. hominis has been postulated. In addition, metabolic resistance and pharmacokinetic limitations by parasitic digestion and reactive thickening of stratum corneum are suspected to cause a reduction in cutaneous bioavailability. Methods: Since lipophilic permethrin is known to form hydrophobic interactions with proteins via van der Waals interactions, a similar interaction was assumed and investigated for permethrin and the protein keratin. Using keratin particles extracted from animal material, a model for hyperkeratotic and parasitic digested scabies skin was developed. Using fluorescence-labeled keratin and ³H-permethrin, their interaction potential was validated by loading and unloading experiments. Additionally, the impact of keratin to permethrin penetration was investigated based on an in vitro model using Franz diffusion cells. Results: For the first time, keratin particles were introduced as a model for dyskeratotic skin, as we were able to show, the keratin particles’ interaction potential with permethrin but no penetration behavior into the stratum corneum. Moreover, comparative penetration experiments of a reference formulation with and without added keratin or keratin-adherent permethrin showed that keratin causes a steal effect for permethrin, leading to a relevant reduction in cutaneous bioavailability in the target compartment. Conclusion: The results provide further evidence for a relevant pharmacokinetic influencing factor in the epicutaneous application of permethrin and a rationale for the necessity of keratolytic pretreatment in hyperkeratotic skin for the effective use of topical permethrin application in scabies.

1.
Currie BJ, McCarthy JS. Permethrin and ivermectin for scabies. N Engl J Med. 2010;362(8):717–25.
2.
Sunderkotter C, Feldmeier H, Folster-Holst R, Geisel B, Klinke-Rehbein S, Nast A, et al. S1 guidelines on the diagnosis and treatment of scabies: short version. J Dtsch Dermatol Ges. 2016;14(11):1155–67.
3.
Zlotkin E. The insect voltage-gated sodium channel as target of insecticides. Annu Rev Entomol. 1999;44:429–55.
4.
Tomalik-Scharte D, Lazar A, Meins J, Bastian B, Ihrig M, Wachall B, et al. Dermal absorption of permethrin following topical administration. Eur J Clin Pharmacol. 2005;61(5–6):399–404.
5.
Buchholz BA, Ahn KC, Huang H, Gee SJ, Stewart BJ, Ognibene TJ, et al. Pharmacokinetics, metabolite measurement, and biomarker identification of dermal exposure to permethrin using accelerator mass spectrometry. Toxicol Sci. 2021;183(1):49–59.
6.
Rosumeck S, Nast A, Dressler C. Ivermectin and permethrin for treating scabies. Cochrane Database Syst Rev. 2018;4:CD012994.
7.
Sunderkotter C, Aebischer A, Neufeld M, Loser C, Kreuter A, Bialek R, et al. Zunahme von skabies in deutschland und entwicklung resistenter kratzemilben? Evidenz und konsequenz. J Dtsch Dermatol Ges. 2019;17(1):15–24.
8.
Dressler C, Rosumeck S, Sunderkotter C, Werner RN, Nast A. The treatment of scabies. Dtsch Arztebl Int. 2016;113(45):757–62.
9.
Aussy A, Houivet E, Hebert V, Colas-Cailleux H, Laaengh N, Richard C, et al. Risk factors for treatment failure in scabies: a cohort study. Br J Dermatol. 2019;180(4):888–93.
10.
Romani L, Steer AC, Whitfeld MJ, Kaldor JM. Prevalence of scabies and impetigo worldwide: a systematic review. Lancet Infect Dis. 2015;15(8):960–7.
11.
Nemecek R, Stockbauer A, Lexa M, Poeppl W, Mooseder G. Application errors associated with topical treatment of scabies: an observational study. J Dtsch Dermatol Ges. 2020;18(6):554–9.
12.
Mang R, Kremer A, Lehmann P, Assmann T. Skabies: klinische Therapieresistenz auf Permethrin; Fallbeschreibungen und eine kritische Auseinandersetzung mit den aktuellen Therapieempfehlungen. Hautarzt. 2021;72(7):595–9.
13.
Khalil S, Abbas O, Kibbi AG, Kurban M. Scabies in the age of increasing drug resistance. PLoS Negl Trop Dis. 2017;11:e0005920.
14.
Andriantsoanirina V, Izri A, Botterel F, Foulet F, Chosidow O, Durand R. Molecular survey of knockdown resistance to pyrethroids in human scabies mites. Clin Microbiol Infect. 2014;20(2):O139–141.
15.
Pasay C, Arlian L, Morgan M, Vyszenski-Moher D, Rose A, Holt D, et al. High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Med Vet Entomol. 2008;22(1):82–8.
16.
Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, et al. Increased transcription of glutathione s-transferases in acaricide exposed scabies mites. Parasit Vectors. 2010;3:43.
17.
Walton SF, Myerscough MR, Currie BJ. Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. Hominis. Trans R Soc Trop Med Hyg. 2000;94(1):92–6.
18.
Pasay C, Arlian L, Morgan M, Gunning R, Rossiter L, Holt D, et al. The effect of insecticide synergists on the response of scabies mites to pyrethroid acaricides. PLoS Negl Trop Dis. 2009;3(1):e354.
19.
Modamio P, Lastra CF, Sebarroja J, Marino EL. Stability of 5% permethrin cream used for scabies treatment. Pediatr Infect Dis J. 2009;28(7):668.
20.
Brisson P. Percutaneous absorption. Can Med Assoc J. 1974;110(10):1182–5.
21.
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. Adv Parasitol. 2012;79:339–73.
22.
Beckham SA, Boyd SE, Reynolds S, Willis C, Johnstone M, Mika A, et al. Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei. J Biol Chem. 2009;284(49):34413–22.
23.
Yoshimura H, Ohigashi T, Uesugi M, Uesugi K, Higashikawa T, Nakamura R, et al. Sarcoptes scabiei var. hominis: three-dimensional structure of a female imago and crusted scabies lesions by X-ray micro-CT. Exp Parasitol. 2009 Aug;122(4):268–72.
24.
Rosita G, Manuel C, Franco M, Cinzia N, Donatella F, Emiliano L, et al. Permethrin and its metabolites affect cu/zn superoxide conformation: fluorescence and in silico evidences. Mol Biosyst. 2015;11(1):208–17.
25.
Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, et al. Permethrin is a potential thyroid-disrupting chemical: in vivo and in silico envidence. Aquat Toxicol. 2016;175:39–46.
26.
Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. Biochim Biophys Acta. 2013;1833(12):3471–80.
27.
Yin XC, Li FY, He YF, Wang Y, Wang RM. Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci. 2013;1(5):528–36.
28.
Arai KM, Takahashi R, Yokote Y, Akahane K. Amino-acid sequence of feather keratin from fowl. Eur J Biochem. 1983;132(3):501–7.
29.
Hansen S, Selzer D, Schaefer UF, Kasting GB. An extended database of keratin binding. J Pharm Sci. 2011;100(5):1712–26.
30.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.
31.
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. Meeting modern challenges in visualization and analysis. Prot Sci. 2018;217(27):14–25.
32.
Wohlrab J. Influence of keratolytics on cutaneous pharmacokinetics of glucocorticoids. J Dtsch Dermatol Ges. 2021;19(4):554–61.
33.
OECD/OCDE. Oecd (428) guideline for the testing of chemicals. Skin absorption: in vitro method. 2004. https://www.oecd-ilibrary.org/docserver/9789264071087-en.pdf?expires=1585567149&id=id&accname=guest&checksum=4F5E105DC79CB1B6B0289ADD8B9D6DA0.
34.
OECD/OCDE. Guidance document for the cinduct of skin absorption studies. 2004;2. http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=env/jm/mono.
35.
Bos JD, Meinardi MM. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.
36.
Nakata R, Osumi Y, Miyagawa S, Tachibana A, Tanabe T. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng. 2015;120(1):111–6.
37.
Saul JM, Ellenburg MD, de Guzman RC, Van Dyke M. Keratin hydrogels support the sustained release of bioactive ciprofloxacin. J Biomed Mater Res A. 2011;98(4):544–53.
38.
Bäumer W, Baynes R. Surface distribution of pyrethroids following topical application to veterinary species: implications for lateral transport. J Vet Pharmacol Ther. 2021;44:1–10.
39.
Guo J, Pan S, Yin X, He YF, Li T, Wang RM. Ph-sensitive keratin-based polymer hydrogel and its controllable drug-release behavior. J Appl Polym Sci. 2014;132(9).
40.
Tran CD, Mututuvari TM. Cellulose, chitosan, and keratin composite materials. Controlled drug release. Langmuir. 2015;31(4):1516–26.
41.
Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interf Sci. 2019;544:121–9.
42.
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, et al. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology. 2018;16(1):24.
You do not currently have access to this content.