The dermal papilla comprises mesenchymal cells in hair follicles, which play the main role in regulating hair growth. Maintaining the potential hair inductivity of dermal papilla cells (DPCs) and dermal sheath cells during cell culture is the main factor in in vitro morphogenesis and regeneration of hair follicles. Using common methods for the cultivation of human dermal papilla reduces the maintenance requirements of the inductive capacity of the dermal papilla and the expression of specific dermal papilla biomarkers. Optimizing culture conditions is therefore crucial for DPCs. Moreover, exosomes appear to play a key role in regulating the hair follicle growth through a paracrine mechanism and provide a functional method for treating hair loss. The present review investigated the biology of DPCs, the molecular and cell signaling mechanisms contributing to hair follicle growth in humans, the properties of the dermal papilla, and the effective techniques in maintaining hair inductivity in DPC cultures in humans as well as hair follicle bioengineering.

1.
Gomolin
A
,
Litvinov
IV
,
Netchiporouk
E
.
Oral minoxidil: a possible new therapy for androgenetic alopecia
.
J Cutan Med Surg
.
2020
;
24
(
1
):
88
9
.
2.
Tai
T
,
Kochhar
A
.
Physiology and medical treatments for alopecia
.
Facial Plast Surg Clin North Am
.
2020
;
28
(
2
):
149
59
.
3.
Rho
SS
,
Park
SJ
,
Hwang
SL
,
Lee
MH
,
Kim
CD
,
Lee
IH
, et al.
The hair growth promoting effect of Asiasari radix extract and its molecular regulation
.
J Dermatol Sci
.
2005
;
38
(
2
):
89
97
.
4.
Tong
T
,
Kim
N
,
Park
T
.
Topical application of oleuropein induces anagen hair growth in telogen mouse skin
.
PLoS One
.
2015
;
10
(
6
):
e0129578
.
5.
Patel
S
,
Sharma
V
,
Chauhan
NS
,
Thakur
M
,
Dixit
VK
.
Hair growth: focus on herbal therapeutic agent
.
Curr Drug Discov Technol
.
2015
;
12
(
1
):
21
42
.
6.
Khatu
SS
,
More
YE
,
Gokhale
NR
,
Chavhan
DC
,
Bendsure
N
.
Platelet-rich plasma in androgenic alopecia: myth or an effective tool
.
J Cutan Aesthet Surg
.
2014
;
7
(
2
):
107
10
.
7.
Li
ZJ
,
Choi
HI
,
Choi
DK
,
Sohn
KC
,
Im
M
,
Seo
YJ
, et al.
Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth
.
Dermatol Surg
.
2012
;
38
(
7 Pt 1
):
1040
6
.
8.
Godse
K
.
Platelet rich plasma in androgenic alopecia: where do we stand?
J Cutan Aesthet Surg
.
2014
;
7
(
2
):
110
1
.
9.
Alves
R
,
Grimalt
R
.
Randomized placebo-controlled, double-blind, half-head study to assess the efficacy of platelet-rich plasma on the treatment of androgenetic alopecia
.
Dermatol Surg
.
2016
;
42
(
4
):
491
7
.
10.
Stefanis
AJ
,
Groh
T
,
Arenbergerova
M
,
Arenberger
P
,
Bauer
PO
.
Stromal vascular fraction and its role in the management of alopecia: a review
.
J Clin Aesthet Dermatol
.
2019
;
12
(
11
):
35
44
.
11.
Gentile
P
,
Garcovich
S
.
Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development
.
Cells
.
2019
;
8
(
5
):
466
.
12.
Epstein
GK
,
Epstein
JS
.
Mesenchymal stem cells and stromal vascular fraction for hair loss: current status
.
Facial Plast Surg Clin North Am
.
2018
;
26
(
4
):
503
11
.
13.
Won
CH
,
Jeong
YM
,
Kang
S
,
Koo
TS
,
Park
SH
,
Park
KY
, et al.
Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells
.
Int J Mol Sci
.
2015
;
16
(
3
):
4379
91
.
14.
Sharma
R
,
Ranjan
A
.
Follicular unit extraction (FUE) hair transplant: curves ahead
.
J Maxillofac Oral Surg
.
2019
;
18
(
4
):
509
17
.
15.
Rishikaysh
P
,
Dev
K
,
Diaz
D
,
Qureshi
WM
,
Filip
S
,
Mokry
J
.
Signaling involved in hair follicle morphogenesis and development
.
Int J Mol Sci
.
2014
;
15
(
1
):
1647
70
.
16.
Greco
V
,
Chen
T
,
Rendl
M
,
Schober
M
,
Pasolli
HA
,
Stokes
N
, et al.
A two-step mechanism for stem cell activation during hair regeneration
.
Cell Stem Cell
.
2009
;
4
(
2
):
155
69
.
17.
Reynolds
AJ
,
Jahoda
CA
.
Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells
.
Development
.
1996
;
122
(
10
):
3085
94
.
18.
Qiao
J
,
Zawadzka
A
,
Philips
E
,
Turetsky
A
,
Batchelor
S
,
Peacock
J
, et al.
Hair follicle neogenesis induced by cultured human scalp dermal papilla cells
.
Regen Med
.
2009
;
4
(
5
):
667
76
.
19.
Birgersdotter
A
,
Sandberg
R
,
Ernberg
I
.
Gene expression perturbation in vitro: a growing case for three-dimensional (3D) culture systems
.
Semin Cancer Biol
.
2005
;
15
(
5
):
405
12
.
20.
Kang
BM
,
Kwack
MH
,
Kim
MK
,
Kim
JC
,
Sung
YK
.
Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay
.
J Invest Dermatol
.
2012
;
132
(
1
):
237
9
.
21.
Rendl
M
,
Polak
L
,
Fuchs
E
.
BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties
.
Genes Dev
.
2008
;
22
(
4
):
543
57
.
22.
Wu
P
,
Zhang
Y
,
Xing
Y
,
Xu
W
,
Guo
H
,
Deng
F
, et al.
The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles
.
Cell Commun Signal
.
2019
;
17
(
1
):
16
.
23.
Galbraith
H
.
Fundamental hair follicle biology and fine fibre production in animals
.
Animal
.
2010
;
4
(
9
):
1490
509
.
24.
Yu
BD
,
Mukhopadhyay
A
,
Wong
C
.
Skin and hair: models for exploring organ regeneration
.
Hum Mol Genet
.
2008
;
17
(
R1
):
R54
9
.
25.
Buffoli
B
,
Rinaldi
F
,
Labanca
M
,
Sorbellini
E
,
Trink
A
,
Guanziroli
E
, et al.
The human hair: from anatomy to physiology
.
Int J Dermatol
.
2014
;
53
(
3
):
331
41
.
26.
Alonso
LC
,
Rosenfield
RL
.
Molecular genetic and endocrine mechanisms of hair growth
.
Horm Res
.
2003
;
60
(
1
):
1
13
.
27.
Driskell
RR
,
Clavel
C
,
Rendl
M
,
Watt
FM
.
Hair follicle dermal papilla cells at a glance
.
J Cell Sci
.
2011
;
124
(
Pt 8
):
1179
82
.
28.
Shimomura
Y
,
Christiano
AM
.
Biology and genetics of hair
.
Annu Rev Genomics Hum Genet
.
2010
;
11
.
109
32
.
29.
Woo
WM
,
Zhen
HH
,
Oro
AE
.
Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop
.
Genes Dev
.
2012
;
26
(
11
):
1235
46
.
30.
Ohyama
M
,
Kobayashi
T
,
Sasaki
T
,
Shimizu
A
,
Amagai
M
.
Restoration of the intrinsic properties of human dermal papilla in vitro
.
J Cell Sci
.
2012
;
125
(
Pt 17
):
4114
25
.
31.
Peus
D
,
Pittelkow
MR
.
Growth factors in hair organ development and the hair growth cycle
.
Dermatol Clin
.
1996
;
14
(
4
):
559
72
.
32.
Choi
N
,
Choi
J
,
Kim
JH
,
Jang
Y
,
Yeo
JH
,
Kang
J
, et al.
Generation of trichogenic adipose-derived stem cells by expression of three factors
.
J Dermatol Sci
.
2018
;
92
(
1
):
18
29
.
33.
Alexandrescu
DT
,
Kauffman
CL
,
Dasanu
CA
.
Persistent hair growth during treatment with the EGFR inhibitor erlotinib
.
Dermatol Online J
.
2009
;
15
(
3
):
4
.
34.
Sugawara
K
,
Kizaki
K
,
Herath
CB
,
Hasegawa
Y
,
Hashizume
K
.
Transforming growth factor beta family expression at the bovine feto-maternal interface
.
Reprod Biol Endocrinol
.
2010
;
8
.
120
.
35.
Inui
S
,
Itami
S
.
Androgen receptor transactivity is potentiated by TGF-β1 through Smad3 but checked by its coactivator Hic-5/ARA55 in balding dermal papilla cells
.
J Dermatol Sci
.
2011
;
64
(
2
):
149
51
.
36.
Fushimi
T
,
Inui
S
,
Ogasawara
M
,
Nakajima
T
,
Hosokawa
K
,
Itami
S
.
Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla
.
J Dermatol Sci
.
2011
;
64
(
3
):
246
8
.
37.
Radek
KA
,
Taylor
KR
,
Gallo
RL
.
FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation
.
Wound Repair Regen
.
2009
;
17
(
1
):
118
26
.
38.
Forbes
BE
,
McCarthy
P
,
Norton
RS
.
Insulin-like growth factor binding proteins: a structural perspective
.
Front Endocrinol
.
2012
;
3
:
38
.
39.
Lee
GS
,
Hong
EJ
,
Gwak
KS
,
Park
MJ
,
Choi
KC
,
Choi
IG
, et al.
The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene
.
Fitoterapia
.
2010
;
81
(
1
):
17
24
.
40.
Enshell-Seijffers
D
,
Lindon
C
,
Wu
E
,
Taketo
MM
,
Morgan
BA
.
Beta-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
50
):
21564
9
.
41.
Enshell-Seijffers
D
,
Lindon
C
,
Kashiwagi
M
,
Morgan
BA
.
β-Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair
.
Dev Cell
.
2010
;
18
(
4
):
633
42
.
42.
Plikus
MV
,
Mayer
JA
,
de la Cruz
D
,
Baker
RE
,
Maini
PK
,
Maxson
R
, et al.
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration
.
Nature
.
2008
;
451
(
7176
):
340
4
.
43.
Karlsson
L
,
Bondjers
C
,
Betsholtz
C
.
Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle
.
Development
.
1999
;
126
(
12
):
2611
21
.
44.
Horne
KA
,
Jahoda
CA
.
Restoration of hair growth by surgical implantation of follicular dermal sheath
.
Development
.
1992
;
116
(
3
):
563
71
.
45.
Wu
JJ
,
Liu
RQ
,
Lu
YG
,
Zhu
TY
,
Cheng
B
,
Men
X
.
Enzyme digestion to isolate and culture human scalp dermal papilla cells: a more efficient method
.
Arch Dermatol Res
.
2005
;
297
(
2
):
60
7
.
46.
Nilforoushzadeh
M
,
Rahimi Jameh
E
,
Jaffary
F
,
Abolhasani
E
,
Keshtmand
G
,
Zarkob
H
, et al.
Hair follicle generation by injections of adult human follicular epithelial and dermal papilla cells into nude mice
.
Cell J
.
2017
;
19
(
2
):
259
68
.
47.
Topouzi
H
,
Logan
NJ
,
Williams
G
,
Higgins
CA
.
Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles
.
Exp Dermatol
.
2017
;
26
(
6
):
491
6
.
48.
Higgins
CA
,
Chen
JC
,
Cerise
JE
,
Jahoda
CA
,
Christiano
AM
.
Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
49
):
19679
88
.
49.
Castro
AR
,
Logarinho
E
.
Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal?
Stem Cells Transl Med
.
2020
;
9
(
3
):
342
50
.
50.
Jahoda
CA
,
Reynolds
AJ
,
Chaponnier
C
,
Forester
JC
,
Gabbiani
G
.
Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro
.
J Cell Sci
.
1991
;
99
(
Pt 3
):
627
36
.
51.
Soma
T
,
Tajima
M
,
Kishimoto
J
.
Hair cycle-specific expression of versican in human hair follicles
.
J Dermatol Sci
.
2005
;
39
(
3
):
147
54
.
52.
Yang
Y
,
Li
Y
,
Wang
Y
,
Wu
J
,
Yang
G
,
Yang
T
, et al.
Versican gene: regulation by the β-catenin signaling pathway plays a significant role in dermal papilla cell aggregative growth
.
J Dermatol Sci
.
2012
;
68
(
3
):
157
63
.
53.
Kim
SR
,
Cha
SY
,
Kim
MK
,
Kim
JC
,
Sung
YK
.
Induction of versican by ascorbic acid 2-phosphate in dermal papilla cells
.
J Dermatol Sci
.
2006
;
43
(
1
):
60
2
.
54.
Ito
Y
,
Hamazaki
TS
,
Ohnuma
K
,
Tamaki
K
,
Asashima
M
,
Okochi
H
.
Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133
.
J Invest Dermatol
.
2007
;
127
(
5
):
1052
60
.
55.
Aoi
N
,
Inoue
K
,
Chikanishi
T
,
Fujiki
R
,
Yamamoto
H
,
Kato
H
, et al.
1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration
.
Stem Cells Transl Med
.
2012
;
1
(
8
):
615
26
.
56.
Xiao
SE
,
Miao
Y
,
Wang
J
,
Jiang
W
,
Fan
ZX
,
Liu
XM
, et al.
As a carrier-transporter for hair follicle reconstitution, platelet-rich plasma promotes proliferation and induction of mouse dermal papilla cells
.
Sci Rep
.
2017
;
7
(
1
):
1125
.
57.
Mohammadi
P
,
Youssef
KK
,
Abbasalizadeh
S
,
Baharvand
H
,
Aghdami
N
.
Human hair reconstruction: close, but yet so far
.
Stem Cells Dev
.
2016
;
25
(
23
):
1767
79
.
58.
Nilforoushzadeh
MA
,
Zare
M
,
Zarrintaj
P
,
Alizadeh
E
,
Taghiabadi
E
,
Heidari-Kharaji
M
, et al.
Engineering the niche for hair regeneration: a critical review
.
Nanomedicine
.
2019
;
15
(
1
):
70
85
.
59.
Higgins
CA
,
Richardson
GD
,
Ferdinando
D
,
Westgate
GE
,
Jahoda
CA
.
Modelling the hair follicle dermal papilla using spheroid cell cultures
.
Exp Dermatol
.
2010
;
19
(
6
):
546
8
.
60.
Driskell
RR
,
Juneja
VR
,
Connelly
JT
,
Kretzschmar
K
,
Tan
DW
,
Watt
FM
.
Clonal growth of dermal papilla cells in hydrogels reveals intrinsic differences between Sox2-positive and -negative cells in vitro and in vivo
.
J Invest Dermatol
.
2012
;
132
(
4
):
1084
93
.
61.
Young
TH
,
Lee
CY
,
Chiu
HC
,
Hsu
CJ
,
Lin
SJ
.
Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration
.
Biomaterials
.
2008
;
29
(
26
):
3521
30
.
62.
Kalabusheva
E
,
Terskikh
V
,
Vorotelyak
E
.
Hair germ model in vitro via human postnatal keratinocyte-dermal papilla interactions: impact of hyaluronic acid
.
Stem Cells Int
.
2017
;
2017
:
9271869
.
63.
Faghihi
G
,
Poostiyan
N
,
Asilian
A
,
Abtahi-Naeini
B
,
Shahbazi
M
,
Iraji
F
, et al.
Efficacy of fractionated microneedle radiofrequency with and without adding subcision for the treatment of atrophic facial acne scars: A randomized split-face clinical study
.
J Cosmet Dermatol
.
2017
;
16
(
2
):
223
9
.
64.
Faghihi
G
,
Mozafarpoor
S
,
Asilian
A
,
Mokhtari
F
,
Esfahani
AA
,
Bafandeh
B
, et al.
The effectiveness of adding low-level light therapy to minoxidil 5% solution in the treatment of patients with androgenetic alopecia
.
Indian J Dermatol Venereol Leprol
.
2018
;
84
(
5
):
547
53
.
65.
Cervantes
J
,
Perper
M
,
Wong
LL
,
Eber
AE
,
Villasante Fricke
AC
,
Wikramanayake
TC
, et al.
Effectiveness of platelet-rich plasma for androgenetic alopecia: a review of the literature
.
Skin Appendage Disord
.
2018
;
4
(
1
):
1
11
.
66.
Dong
L
,
Hao
H
,
Xia
L
,
Liu
J
,
Ti
D
,
Tong
C
, et al.
Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth
.
Sci Rep
.
2014
;
4
.
5432
.
67.
Inamatsu
M
,
Matsuzaki
T
,
Iwanari
H
,
Yoshizato
K
.
Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin
.
J Invest Dermatol
.
1998
;
111
(
5
):
767
75
.
68.
Driskell
RR
,
Giangreco
A
,
Jensen
KB
,
Mulder
KW
,
Watt
FM
.
Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis
.
Development
.
2009
;
136
(
16
):
2815
23
.
69.
Veraitch
O
,
Mabuchi
Y
,
Matsuzaki
Y
,
Sasaki
T
,
Okuno
H
,
Tsukashima
A
, et al.
Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells
.
Sci Rep
.
2017
;
7
.
42777
.
70.
Chalisserry
EP
,
Nam
SY
,
Park
SH
,
Anil
S
.
Therapeutic potential of dental stem cells
.
J Tissue Eng
.
2017
;
8
:
2041731417702531
.
71.
Kishimoto
J
,
Burgeson
RE
,
Morgan
BA
.
Wnt signaling maintains the hair-inducing activity of the dermal papilla
.
Genes Dev
.
2000
;
14
(
10
):
1181
5
.
72.
Zhou
L
,
Xu
M
,
Yang
Y
,
Yang
K
,
Wickett
RR
,
Andl
T
, et al.
Activation of β-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth
.
PLoS One
.
2016
;
11
(
7
):
e0160425
.
73.
Miao
Y
,
Feng
CB
,
Zhang
ZD
,
Li
ZH
,
Xiao
SE
,
Jiang
JD
, et al.
[Effect of PRP on the proliferation of dermal papilla cells and hair follicle regeneration in mice]
.
Zhonghua Zheng Xing Wai Ke Za Zhi
.
2013
;
29
(
2
):
131
5
.
74.
Miao
Y
,
Sun
YB
,
Sun
XJ
,
Du
BJ
,
Jiang
JD
,
Hu
ZQ
.
Promotional effect of platelet-rich plasma on hair follicle reconstitution in vivo
.
Dermatol Surg
.
2013
;
39
(
12
):
1868
76
.
75.
Rastegar
H
,
Ahmadi Ashtiani
H
,
Aghaei
M
,
Ehsani
A
,
Barikbin
B
.
Combination of herbal extracts and platelet-rich plasma induced dermal papilla cell proliferation: involvement of ERK and Akt pathways
.
J Cosmet Dermatol
.
2013
;
12
(
2
):
116
22
.
76.
Soma
T
,
Fujiwara
S
,
Shirakata
Y
,
Hashimoto
K
,
Kishimoto
J
.
Hair-inducing ability of human dermal papilla cells cultured under Wnt/β-catenin signalling activation
.
Exp Dermatol
.
2012
;
21
(
4
):
307
9
.
77.
Osada
A
,
Iwabuchi
T
,
Kishimoto
J
,
Hamazaki
TS
,
Okochi
H
.
Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction
.
Tissue Eng
.
2007
;
13
(
5
):
975
82
.
78.
Zhang
P
,
Kling
RE
,
Ravuri
SK
,
Kokai
LE
,
Rubin
JP
,
Chai
JK
, et al.
A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration
.
J Tissue Eng
.
2014
;
5
.
2041731414556850
.
79.
Rajendran
RL
,
Gangadaran
P
,
Bak
SS
,
Oh
JM
,
Kalimuthu
S
,
Lee
HW
, et al.
Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice
.
Sci Rep
.
2017
;
7
(
1
):
15560
.
80.
Kwack
MH
,
Seo
CH
,
Gangadaran
P
,
Ahn
BC
,
Kim
MK
,
Kim
JC
, et al.
Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres
.
Exp Dermatol
.
2019
;
28
(
7
):
854
7
.
81.
Horne
KA
,
Jahoda
CA
,
Oliver
RF
.
Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat
.
J Embryol Exp Morphol
.
1986
;
97
.
111
24
.
82.
Lichti
U
,
Weinberg
WC
,
Goodman
L
,
Ledbetter
S
,
Dooley
T
,
Morgan
D
, et al.
In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice
.
J Invest Dermatol
.
1993
;
101
(
1 Suppl
):
124S
9S
.
83.
Pawitan
JA
.
Prospect of stem cell conditioned medium in regenerative medicine
.
Biomed Res Int
.
2014
;
2014
:
965849
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.