The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms.

1.
Proksch E, Brandner JM, Jensen JM: The skin: an indispensable barrier. Exp Dermatol 2008;17:1063-1072.
2.
van Smeden J, Janssens M, Gooris GS, Bouwstra JA: The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta 2014;1841:295-313.
3.
Holleran WM, Takagi Y, Uchida Y: Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 2006;580:5456-5466.
4.
Menon GK, Cleary GW, Lane ME: The structure and function of the stratum corneum. Int J Pharm 2012;435:3-9.
5.
Wartewig S, Neubert RH: Properties of ceramides and their impact on the stratum corneum structure: a review. Part 1. Ceramides. Skin Pharmacol Physiol 2007;20:220-229.
6.
Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A: Decreased level of ceramides in stratum-corneum of atopic-dermatitis - an etiologic factor in atopic dry skin. J Invest Dermatol 1991;96:523-526.
7.
Di Nardo A, Wertz P, Giannetti A, Seidenari S: Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol 1998;78:27-30.
8.
Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R: Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1993;1182:147-151.
9.
Motta S, Monti M, Sesana S, Mellesi L, Ghidoni R, Caputo R: Abnormality of water barrier function in psoriasis - role of ceramide fractions. Arch Dermatol 1994;130:452-456.
10.
Rogers J, Harding C, Mayo A, Banks J, Rawlings A: Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 1996;288:765-770.
11.
Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RH: Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol Phys 2015;28:42-55.
12.
Ono J, Kinoshita M, Aida K, Tamura M, Ohnishi M: Effects of dietary glucosylceramide on dermatitis in atopic dermatitis model mice. Eur J Lipid Sci Tech 2010;112:708-711.
13.
Adam D: Review blames BSE outbreak on calf feed. Nature 2001;412:467.
14.
Uchiyama T, Nakano Y, Ueda O, Mori H, Nakashima M, Noda A, Ishizaki C, Mizoguchi M: Oral intake of glucosylceramide improves relatively higher level of transepidermal water loss in mice and healthy human subjects. J Health Sci 2008;54:559-566.
15.
Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y: Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 2006;44:101-107.
16.
Shimoda H, Terazawa S, Hitoe S, Tanaka J, Nakamura S, Matsuda H, Yoshikawa M: Changes in ceramides and glucosylceramides in mouse skin and human epidermal equivalents by rice-derived glucosylceramide. J Med Food 2012;15:1064-1072.
17.
Kuempel D, Swartzendruber DC, Squier CA, Wertz PW: In vitro reconstitution of stratum corneum lipid lamellae. Biochim Biophys Acta 1998;1372:135-140.
18.
Bouwstra JA, Honeywell-Nguyen PL: Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 2002;54(suppl 1):S41-S55.
19.
Bouwstra JA, Ponec M: The skin barrier in healthy and diseased state. Biochim Biophys Acta 2006;1758:2080-2095.
20.
Man MM, Feingold KR, Thornfeldt CR, Elias PM: Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol 1996;106:1096-1101.
21.
Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y: Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 2009;91:784-790.
22.
Ponec M, Weerheim A, Lankhorst P, Wertz P: New acylceramide in native and reconstructed epidermis. J Invest Dermatol 2003;120:581-588.
23.
Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T, Takema Y, Kita K: Characterization of overall ceramide species in human stratum corneum. J Lipid Res 2008;49:1466-1476.
24.
Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T: Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009;50:1708-1719.
25.
Kessner D, Kiselev M, Dante S, Hauss T, Lersch P, Wartewig S, Neubert RH: Arrangement of ceramide (EOS) in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur Biophys J 2008;37:989-999.
26.
Schroter A, Kessner D, Kiselev MA, Hauss T, Dante S, Neubert RH: Basic nanostructure of stratum corneum lipid matrices based on ceramides (EOS) and (AP): a neutron diffraction study. Biophys J 2009;97:1104-1114.
27.
Wartewig S, Neubert RH: Properties of ceramides and their impact on the stratum corneum structure: a review. Skin Pharmacol Phys 2007;20:220-229.
28.
de Sousa Neto D, Gooris G, Bouwstra J: Effect of the ω-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids 2011;164:184-195.
29.
Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM: Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J Invest Dermatol 2000;114:185-192.
30.
Uchida Y, Holleran WM: Omega-o-acylceramide, a lipid essential for mammalian survival. J Dermatol Sci 2008;51:77-87.
31.
t'Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K: Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 2012;84:403-411.
32.
Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT: 6-hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 1994;35:2060-2068.
33.
Farwanah H, Wohlrab J, Neubert RH, Raith K: Profiling of human stratum corneum ceramides by means of normal phase LC/APCI-MS. Anal Bioanal Chem 2005;383:632-637.
34.
Farwanah H, Raith K, Neubert RH, Wohlrab J: Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch Dermatol Res 2005;296:514-521.
35.
Uchida Y, Holleran WM, Elias PM: On the effects of topical synthetic pseudoceramides: comparison of possible keratinocyte toxicities provoked by the pseudoceramides, PC104 and BIO391, and natural ceramides. J Dermatol Sci 2008;51:37-43.
36.
Carneiro R, Salgado A, Raposo S, Marto J, Simoes S, Urbano M, Ribeiro HM: Topical emulsions containing ceramides: effects on the skin barrier function and anti-inflammatory properties. Eur J Lipid Sci Tech 2011;113:961-966.
37.
Moore DJ, Rerek ME: Insights into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Derm Venereol 2000;16-22.
38.
Hamanaka S, Nakazawa S, Yamanaka M, Uchida Y, Otsuka F: Glucosylceramide accumulates preferentially in lamellar bodies in differentiated keratinocytes. Br J Dermatol 2005;152:426-434.
39.
Hamanaka S, Hara M, Nishio H, Otsuka F, Suzuki A, Uchida Y: Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol 2002;119:416-423.
40.
Alessandrini F, Pfister S, Kremmer E, Gerber JK, Ring J, Behrendt H: Alterations of glucosylceramide-beta-glucosidase levels in the skin of patients with psoriasis vulgaris. J Invest Dermatol 2004;123:1030-1036.
41.
Vielhaber G, Pfeiffer S, Brade L, Lindner B, Goldmann T, Vollmer E, Hintze U, Wittern KP, Wepf R: Localization of ceramide and glucosylceramide in human epidermis by immunogold electron microscopy. J Invest Dermatol 2001;117:1126-1136.
42.
Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, Suzuki A, Elias PM, Holleran WM, Hamanaka S: Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res 2000;41:2071-2082.
43.
Holleran WM, Ginns EI, Menon GK, Grundmann JU, Fartasch M, McKinney CE, Elias PM, Sidransky E: Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest 1994;93:1756-1764.
44.
Holleran WM, Takagi Y, Uchida Y: Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 2006;580:5456-5466.
45.
Grayson S, Elias PM: Isolation and lipid biochemical characterization of stratum corneum membrane complexes: implications for the cutaneous permeability barrier. J Invest Dermatol 1982;78:128-135.
46.
Breathnach AS, Goodman T, Stolinski C, Gross M: Freeze-fracture replication of cells of stratum corneum of human epidermis. J Anat 1973;114:65-81.
47.
Breathnach AS: Aspects of epidermal ultrastructure. J Invest Dermatol 1975;65:2-15.
48.
Madison KC, Swartzendruber DC, Wertz PW, Downing DT: Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol 1987;88:714-718.
49.
Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM: Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J Invest Dermatol 1991;96:215-223.
50.
Bouwstra JA, Gooris GS, van der Spek JA, Bras W: Structural investigations of human stratum corneum by small-angle X-ray scattering. J Invest Dermatol 1991;97:1005-1012.
51.
Bouwstra JA, Gooris GS, Dubbelaar FE, Weerheim AM, Ijzerman AP, Ponec M: Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res 1998;39:186-196.
52.
McIntosh TJ, Stewart ME, Downing DT: X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry 1996;35:3649-3653.
53.
de Jager MW, Gooris GS, Ponec M, Bouwstra JA: Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J Lipid Res 2005;46:2649-2656.
54.
Kiselev MA, Ryabova NY, Balagurov AM, Dante S, Hauss T, Zbytovska J, Wartewig S, Neubert RH: New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur Biophys J 2005;34:1030-1040.
55.
Engelbrecht TN, Schroeter A, Hauss T, Deme B, Scheidt HA, Huster D, Neubert RH: The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I. Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter 2012;8:6599-6607.
56.
Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH: Properties of ceramides and their impact on the stratum corneum structure. Part 2. Stratum corneum lipid model systems. Skin Pharmacol Physiol 2008;21:58-74.
57.
Bleck O, Abeck D, Ring J, Hoppe U, Vietzke JP, Wolber R, Brandt O, Schreiner V: Two ceramide subfractions detectable in Cer(AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. J Invest Dermatol 1999;113:894-900.
58.
Macheleidt O, Kaiser HW, Sandhoff K: Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol 2002;119:166-173.
59.
Hara J, Higuchi K, Okamoto R, Kawashima M, Imokawa G: High expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J Invest Dermatol 2000;115:406-413.
60.
Imokawa G: A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J Dermatol Sci 2009;55:1-9.
61.
Ishibashi M, Arikawa J, Okamoto R, Kawashima M, Takagi Y, Ohguchi K, Imokawa G: Abnormal expression of the novel epidermal enzyme, glucosylceramide deacylase, and the accumulation of its enzymatic reaction product, glucosylsphingosine, in the skin of patients with atopic dermatitis. Lab Invest 2003;83:397-408.
62.
Ohnishi Y, Okino N, Ito M, Imayama S: Ceramidase activity in bacterial skin flora as a possible cause of ceramide deficiency in atopic dermatitis. Clin Diagn Lab Immun 1999;6:101-104.
63.
Jin K, Higaki Y, Takagi Y, Higuchi K, Yada Y, Kawashima M, Imokawa G: Analysis of beta-glucocerebrosidase and ceramidase activities in atopic and aged dry skin. Acta Derm Venereol 1994;74:337-340.
64.
Kusuda S, Cui CY, Takahashi M, Tezuka T: Localization of sphingomyelinase in lesional skin of atopic dermatitis patients. J Invest Dermatol 1998;111:733-738.
65.
Berardesca E, Fideli D, Borroni G, Rabbiosi G, Maibach H: In vivo hydration and water-retention capacity of stratum corneum in clinically uninvolved skin in atopic and psoriatic patients. Acta Derm Venereol 1990;70:400-404.
66.
Serup J, Blichmann C: Epidermal hydration of psoriasis plaques and the relation to scaling - measurement of electrical conductance and trans-epidermal water loss. Acta Derm Venereol 1987;67:357-359.
67.
Alessandrini F, Stachowitz S, Ring J, Behrendt H: The level of prosaposin is decreased in the skin of patients with psoriasis vulgaris. J Invest Dermatol 2001;116:394-400.
68.
Sperling P, Heinz E: Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 2003;1632:1-15.
69.
Spassieva S, Hille J: Plant sphingolipids today - are they still enigmatic? Plant Biol 2003;5:125-136.
70.
Pata MO, Hannun YA, Ng CKY: Plant sphingolipids: decoding the enigma of the sphinx. New Phytol 2010;185:611-630.
71.
Lynch DV, Dunn TM: An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 2004;161:677-702.
72.
Warnecke D, Heinz E: Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 2003;60:919-941.
73.
Fujino Y, Ohnishi M, Ito S: Molecular-species of ceramide and mono-glycosylceramide, di-glycosylceramide, tri-glycosylceramide, and tetraglycosylceramide in bran and endosperm of rice grains. Agric Biol Chem Tokyo 1985;49:2753-2762.
74.
Ohnishi M, Ito S, Fujino Y: Sphingolipid classes and their molecular species in wheat-flour. Agric Biol Chem Tokyo 1985;49:3609-3611.
75.
Bromley PE, Li YO, Murphy SM, Sumner CM, Lynch DV: Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes. Arch Biochem Biophys 2003;417:219-226.
76.
Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB: Plant sphingolipids: function follows form. Curr Opin Plant Biol 2013;16:350-357.
77.
Sullards MC, Lynch DV, Merrill AH Jr, Adams J: Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J Mass Spectr 2000;35:347-353.
78.
Sperling P, Libisch B, Zahringer U, Napier JA, Heinz E: Functional identification of a Δ8-sphingolipid desaturase from Borago officinalis. Arch Biochem Biophys 2001;388:293-298.
79.
Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T: Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 2010;45:451-455.
80.
Sugawara T, Aida K, Duan J, Hirata T: Analysis of glucosylceramides from various sources by liquid chromatography-ion trap mass spectrometry. J Oleo Sci 2010;59:387-394.
81.
Breiden B, Sandhoff K: The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim Biophys Acta 2014;1841:441-452.
82.
Imai H, Ohnishi M, Hotsubo K, Kojima M, Ito S: Sphingoid base composition of cerebrosides from plant leaves. Biosci Biotech Biochem 1997;61:351-353.
83.
Ohnishi M, Ito S, Fujino Y: Characterization of sphingolipids in spinach leaves. Biochim Biophys Acta 1983;752:416-422.
84.
Fujino Y, Ohnishi M: Sphingolipids in wheat-grain. J Cereal Sci 1983;1:159-168.
85.
Imai H, Morimoto Y, Tamura K: Sphingoid base composition of monoglucosylceramide in Brassicaceae. J Plant Physiol 2000;157:453-456.
86.
Imai H, Ohnishi M, Kinoshita M, Kojima M, Ito S: Structure and distribution of cerebroside containing unsaturated hydroxy fatty-acids in plant-leaves. Biosci Biotech Biochem 1995;59:1309-1313.
87.
Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T: Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids 2000;35:233-236.
88.
Uemura M, Steponkus PL: A contrast of the plasma-membrane lipid-composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 1994;104:479-496.
89.
Ohnishi M, Fujino Y: Sphingolipids in immature and mature soybeans. Lipids 1982;17:803-810.
90.
Cahoon EB, Lynch DV: Analysis of glucocerebrosides of rye (Secale cereale L cv Puma) leaf and plasma membrane. Plant Physiol 1991;95:58-68.
91.
Napolitano A, Benavides A, Pizza C, Piacente S: Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: the case of Dracontium loretense. J Pharm Biomed Anal 2011;55:23-30.
92.
Markham JE, Li J, Cahoon EB, Jaworski JG: Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 2006;281:22684-22694.
93.
Farwanah H, Kolter T, Sandhoff K: Mass spectrometric analysis of neutral sphingolipids: methods, applications, and limitations. Biochim Biophys Acta 2011;1811:854-860.
94.
Markham JE, Jaworski JG: Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2007;21:1304-1314.
95.
Pettus BJ, Bielawska A, Kroesen BJ, Moeller PDR, Szulc ZM, Hannun YA, Busman M: Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 2003;17:1203-1211.
96.
Bartke N, Fischbeck A, Humpf HU: Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Mol Nutr Food Res 2006;50:1201-1211.
97.
Farwanah H, Wirtz J, Kolter T, Raith K, Neubert RH, Sandhoff K: Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:2976-2982.
98.
Tokudome Y, Endo M, Hashimoto F: Application of glucosylceramide-based liposomes increased the ceramide content in a three-dimensional cultured skin epidermis. Skin Pharmacol Physiol 2014;27:18-24.
99.
Ueda O, Hasegawa M, Kitamura S: Distribution in skin of ceramide after oral administration to rats. Drug Metab Pharmacokinet 2009;24:180-184.
100.
Fujino Y, Ohnishi M: Species of sphingolipids in rice grain. Proc Jpn Acad Ser B Phys Biol Sci 1982;58:36-39.
101.
Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M: Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydrazine-treated mice. J Oleo Sci 2005;54:45-49.
102.
Gutierrez E, Wang T, Fehr WR: Quantification of sphingolipids in soybeans. J Am Oil Chem Soc 2004;81:737-742.
103.
Shirakura Y, Kikuchi K, Matsumura K, Mukai K, Mitsutake S, Igarashi Y: 4,8-sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Lipids Health Dis 2012;11:108.
104.
Usuki S, Tamura N, Sakai S, Tamura T, Mukai K, Igarashi Y: Chemoenzymatically prepared konjac ceramide inhibits NGF-induced neurite outgrowth by a semaphorin 3A-like action. Biochem Biophys Rep 2016;5:160-167.
105.
Fujino Y, Ohnishi M: Constituents of ceramide and ceramide monohexoside in rice bran. Chem Phys Lipids 1976;17:275-289.
106.
Kimata H: Improvement of atopic dermatitis and reduction of skin allergic responses by oral intake of konjac ceramide. Pediatr Dermatol 2006;23:386-389.
107.
Goto H, Nishikawa K, Shionoya N, Taniguchi M, Igarashi T: Determination of sphingoid bases from hydrolyzed glucosylceramide in rice and wheat by online post-column high-performance liquid chromatography with O-phthalaldehyde derivatization. J Oleo Sci 2012;61:681-688.
108.
Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M: Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 2003;133:2777-2782.
109.
Guillou S, Ghabri S, Jannot C, Gaillard E, Lamour I, Boisnic S: The moisturizing effect of a wheat extract food supplement on women's skin: a randomized, double-blind placebo-controlled trial. Int J Cosmet Sci 2011;33:138-143.
110.
Yeom M, Kim SH, Lee B, Han JJ, Chung GH, Choi HD, Lee H, Hahm DH: Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear. J Dermatol Sci 2012;67:101-110.
111.
Kawano K, Umemura K: Oral intake of beet extract provides protection against skin barrier impairment in hairless mice. Phytother Res 2013;27:775-783.
112.
Miyanishi K, Shiono N, Shirai H, Dombo M, Kimata H: Reduction of transepidermal water loss by oral intake of glucosylceramides in patients with atopic eczema. Allergy 2005;60:1454-1455.
113.
Loden M, Barany E: Skin-identical lipids versus petrolatum in the treatment of tape-stripped and detergent-perturbed human skin. Acta Derm Venereol 2000;80:412-415.
114.
Fujii M, Tomozawa J, Mizutani N, Nabe T, Danno K, Kohno S: Atopic dermatitis-like pruritic skin inflammation caused by feeding a special diet to HR-1 hairless mice. Exp Dermatol 2005;14:460-468.
115.
Makiura M, Akamatsu H, Akita H, Yagami A, Shimizu Y, Eiro H, Kuramoto M, Suzuki K, Matsunaga K: Atopic dermatitis-like symptoms in HR-1 hairless mice fed a diet low in magnesium and zinc. J Int Med Res 2004;32:392-399.
116.
Kang JS, Youm JK, Jeong SK, Park BD, Yoon WK, Han MH, Lee H, Han SB, Lee K, Park SK, Lee SH, Yang KH, Moon EY, Kim HM: Topical application of a novel ceramide derivative, K6PC-9, inhibits dust mite extract-induced atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 2007;7:1589-1597.
117.
Hori M, Kishimoto S, Tezuka Y, Nishigori H, Nomoto K, Hamada U, Yonei Y: Double-blind study on effects of glucosyl ceramide in beet extract on skin elasticity and fibronectin production in human dermal fibroblasts. Anti Aging Med 2010;7:129-142.
118.
Nilsson A: The presence of sphingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 1969;176:339-347.
119.
Nilsson A: Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 1968;164:575-584.
120.
Nilsson A: Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 1969;187:113-121.
121.
Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr: Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 1994;124:702-712.
122.
Nyberg L, Nilsson A, Lundgren P, Duan RD: Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 1997;8:112-118.
123.
Leese HJ, Semenza G: On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 1973;248:8170-8173.
124.
Buller HA, Van Wassenaer AG, Raghavan S, Montgomery RK, Sybicki MA, Grand RJ: New insights into lactase and glycosylceramidase activities of rat lactase-phlorizin hydrolase. Am J Physiol 1989;257:G616-G623.
125.
Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson A: Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 2001;36:807-812.
126.
Olsson M, Duan RD, Ohlsson L, Nilsson A: Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol Gastrointest Liver Physiol 2004;287:G929-G937.
127.
Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL: Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 2006;281:7324-7331.
128.
Nilsson A, Duan RD: Absorption and lipoprotein transport of sphingomyelin. J Lipid Res 2006;47:154-171.
129.
Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M: Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotech Biochem 2004;68:2541-2546.
130.
Renkonen O, Hirvisal EL: Structure of plasma sphingadienine. J Lipid Res 1969;10:687-693.
131.
Ando S, Isobe M, Nagai Y: High-performance preparative column chromatography of lipids using a new porous silica, Iatrobeads.1. Separation of molecular species of sphingoglycolipids. Biochim Biophys Acta 1976;424:98-105.
132.
Colsch B, Afonso C, Popa L, Portoukalian J, Fournier F, Tabet JC, Baumann N: Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine. J Lipid Res 2004;45:281-286.
133.
Ishikawa J, Takada S, Hashizume K, Takagi Y, Hotta M, Masukawa Y, Mizutani Y, Igarashi Y: Dietary glucosylceramide is absorbed into the lymph and increases levels of epidermal sphingolipids. J Dermatol Sci 2009;56:216-218.
134.
Sugawara T, Tsuduki T, Yano S, Hirose M, Duan JJ, Aida K, Ikeda I, Hirata T: Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 2010;51:1761-1769.
135.
Takeda S, Mitsutake S, Tsuji K, Igarashi Y: Apoptosis occurs via the ceramide recycling pathway in human HaCaT keratinocytes. J Biochem 2006;139:255-262.
136.
Ueda O, Uchiyama T, Nakashima M: Distribution and metabolism of sphingosine in skin after oral administration to mice. Drug Metab Pharmacokinet 2010;25:456-465.
137.
Duan JJ, Sugawara T, Hirose M, Aida K, Sakai S, Fujii A, Hirata T: Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis. Exp Dermatol 2012;21:448-452.
138.
Hitomi K: Transglutaminases in skin epidermis. Eur J Dermatol 2005;15:313-319.
139.
Kunii T, Hirao T, Kikuchi K, Tagami H: Stratum corneum lipid profile and maturation pattern of corneocytes in the outermost layer of fresh scars: the presence of immature corneocytes plays a much more important role in the barrier dysfunction than do changes in intercellular lipids. Br J Dermatol 2003;149:749-756.
140.
Kirschner N, Bohner C, Rachow S, Brandner JM: Tight junctions: is there a role in dermatology? Arch Dermatol Res 2010;302:483-493.
141.
Ideta R, Sakuta T, Nakano Y, Uchiyama T: Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 2011;75:1516-1523.
142.
Hasegawa T, Shimada H, Uchiyama T, Ueda O, Nakashima M, Matsuoka Y: Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 2011;46:529-535.
143.
Kawada C, Hasegawa T, Watanabe M, Nomura Y: Dietary glucosylceramide enhances tight junction function in skin epidermis via induction of claudin-1. Biosci Biotechnol Biochem 2013;77:867-869.
144.
Murakami I, Wakasa Y, Yamashita S, Kurihara T, Zama K, Kobayashi N, Mizutani Y, Mitsutake S, Shigyo T, Igarashi Y: Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors. Lipids Health Dis 2011;10:150.
145.
Takatori R, Le Vu P, Iwamoto T, Satsu H, Totsuka M, Chida K, Shimizu M: Effects of oral administration of glucosylceramide on gene expression changes in hairless mouse skin: comparison of whole skin, epidermis, and dermis. Biosci Biotechnol Biochem 2013;77:1882-1887.
146.
Lin J-Y, Selim MA, Shea CR, Grichnik JM, Omar MM, Monteiro-Riviere NA, Pinnell SR: UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J Am Acad Dermatol 2003;48:866-874.
147.
Gasperlin M, Gosenca M: Main approaches for delivering antioxidant vitamins through the skin to prevent skin ageing. Exp Opin Drug Deliv 2011;8:905-919.
148.
Clinical investigation of skin-beautifying effect of a beauty supplement containing rice-derived ceramide. Ichinomiya, Oryza Oil & Fat Chemical Co. Ltd., 2000.
149.
Deschamps FS, Gaudin K, Baillet A, Chaminade P: Wheat digalactosyldiacylglycerol molecular species profiling using porous graphitic carbon stationary phase. J Sep Sci 2004;27:1313-1322.
150.
Sugawara T, Miyazawa T: Beneficial effect of dietary wheat glycolipids on cecum short-chain fatty acid and secondary bile acid profiles in mice. J Nutr Sci Vitaminol (Tokyo) 2001;47:299-305.
151.
Djedour A, Lafforgue C, Marty JP, Grossiord JL: A very promising new glucolipidic surfactant: Lipowheat. Int J Cosmet Sci 2005;27:301-308.
152.
SEPPIC: Ceramosides: Highly powerful source of phytoceramides from wheat. Paris, SEPPIC, 2016.
153.
Hon KL, Leung AK: Use of ceramides and related products for childhood-onset eczema. Recent Pat Inflamm Allergy Drug Discov 2013;7:12-19.
154.
Grimalt R, Mengeaud V, Cambazard F; Study Investigators' Group: The steroid-sparing effect of an emollient therapy in infants with atopic dermatitis: a randomized controlled study. Dermatology 2007;214:61-67.
155.
Loden M, Wiren K, Smerud K, Meland N, Honnas H, Mork G, Lutzow-Holm C, Funk J, Meding B: Treatment with a barrier-strengthening moisturizer prevents relapse of hand-eczema: an open, randomized, prospective, parallel group study. Acta Derm Venereol 2010;90:602-606.
156.
Simpson EL: Atopic dermatitis: a review of topical treatment options. Curr Med Res Opin 2010;26:633-640.
157.
Frankel A, Sohn A, Patel RV, Lebwohl M: Bilateral comparison study of pimecrolimus cream 1% and a ceramide-hyaluronic acid emollient foam in the treatment of patients with atopic dermatitis. J Drugs Dermatol 2011;10:666-672.
158.
Chamlin SL, Kao J, Frieden IJ, Sheu MY, Fowler AJ, Fluhr JW, Williams ML, Elias PM: Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 2002;47:198-208.
159.
Weber TM, Kausch M, Rippke F, Schoelermann AM, Filbry AW: Treatment of xerosis with a topical formulation containing glyceryl glucoside, natural moisturizing factors, and ceramide. J Clin Aesthet Dermatol 2012;5:29-39.
160.
Hon KL, Wang SS, Lau Z, Lee HC, Lee KK, Leung TF, Luk NM: Pseudoceramide for childhood eczema: does it work? Hong Kong Med J 2011;17:132-136.
161.
Lee YB, Park HJ, Kwon MJ, Jeong SK, Cho SH: Beneficial effects of pseudoceramide-containing physiologic lipid mixture as a vehicle for topical steroids. Eur J Dermatol 2011;21:710-716.
162.
Kim HJ, Park HJ, Yun JN, Jeong SK, Ahn SK, Lee SH: Pseudoceramide-containing physiological lipid mixture reduces adverse effects of topical steroids. Allergy Asthma Immunol Res 2011;3:96-102.
163.
de Jager MW, Gooris GS, Dolbnya IP, Ponec M, Bouwstra JA: Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. Biochim Biophys Acta 2004;1664:132-140.
164.
Sahle FF, Wohlrab J, Neubert RH: Controlled penetration of ceramides into and across the stratum corneum using various types of microemulsions and formulation associated toxicity studies. Eur J Pharm Biopharm 2014;86:244-250.
165.
Loden M: The skin barrier and use of moisturizers in atopic dermatitis. Clin Dermatol 2003;21:145-157.
166.
Coderch L, De Pera M, Fonollosa J, De la Maza A, Parra J: Efficacy of stratum corneum lipid supplementation on human skin. Contact Dermatitis 2002;47:139-146.
167.
de Pera M, Coderch L, Fonollosa J, de la Maza A, Parra JL: Effect of internal wool lipid liposomes on skin repair. Skin Pharmacol Appl Skin Physiol 2000;13:188-195.
168.
Heuschkel S, Goebel A, Neubert RH: Microemulsions - modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 2008;97:603-631.
169.
Sahle FF, Metz H, Wohlrab J, Neubert RH: Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. Eur J Pharm Biopharm 2012;82:139-150.
170.
Sahle FF, Metz H, Wohlrab J, Neubert RH: Lecithin-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res 2013;30:538-551.
171.
Gregoire S, Patouillet C, Noe C, Fossa I, Kieffer FB, Ribaud C: Improvement of the experimental setup for skin absorption screening studies with reconstructed skin EPISKIN. Skin Pharmacol Phys 2008;21:89-97.
172.
Tokudome Y, Uchida R, Yokote T, Todo H, Hada N, Kon T, Yasuda J, Hayashi H, Hashimoto F, Sugibayashi K: Effect of topically applied sphingomyelin-based liposomes on the ceramide level in a three-dimensional cultured human skin model. J Liposome Res 2010;20:49-54.
173.
Tokudome Y, Jinno M, Todo H, Kon T, Sugibayashi K, Hashimoto F: Increase in ceramide level after application of various sizes of sphingomyelin liposomes to a cultured human skin model. Skin Pharmacol Phys 2011;24:218-223.
174.
Asai S, Miyachi H: Evaluation of skin-moisturizing effects of oral or percutaneous use of plant ceramides (in Japanese). Rinsho Byori 2007;55:209-215.
175.
Shimada E, Aida K, Sugawara T, Hirata T: Inhibitory effect of topical maize glucosylceramide on skin photoaging in UVA-irradiated hairless mice. J Oleo Sci 2011;60:321-325.
176.
Grob CA, Jenny EF: Die synthese von dihydro-sphingosin. Helv Chim Acta 1952;35:2106-2111.
177.
Carter HE, Shapiro D, Harrison JB: Synthesis and configuration of dihydrosphingosine. J Am Chem Soc 1953;75:1007-1008.
178.
Fujino Y, Negishi T: Studies on the conjugated lipids. 5. Configuration of the galactoside linkage in cerebrosides. Bull Agric Chem Soc Japan 1956;20:183-187.
179.
Carter HE, Nalbandov O, Tavormina PA: Biochemistry of the sphingolipides. 6. The O-methyl ethers of sphingosine. J Biol Chem 1951;192:197-207.
180.
Karlsson KA: On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids 1970;5:6-43.
181.
Sambasivarao K, McCluer RH: Thin-layer chromatographic separation of sphingosine and related bases. J Lipid Res 1963;4:106-108.
182.
Gatt S: Enzymic hydrolysis of sphingolipids - hydrolysis of ceramide glucoside by an enzyme from ox brain. Biochem J 1966;101:687-691.
183.
Gatt S, Rapport MM: Enzymic hydrolysis of sphingolipids - hydrolysis of ceramide lactoside by an enzyme from rat brain. Biochem J 1966;101:680-686.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.