Previous studies on the antimicrobial activity of cold atmospheric pressure argon plasma showed varying effects against mecA+ or mecA-Staphylococcus aureus strains. This observation may have important clinical and epidemiological implications. Here, the antibacterial activity of argon plasma was investigated against 78 genetically different S. aureus strains, stratified by mecA, luk-P, agr1-4, or the cell wall capsule polysaccharide types 5 and 8. kINPen09® served as the plasma source for all experiments. On agar plates, mecA+luk-P-S. aureus strains showed a decreased susceptibility against plasma compared to other S. aureus strains. This study underlines the high complexity of microbial defence against antimicrobial treatment and confirms a previously reported strain-dependent susceptibility of S. aureus to plasma treatment.

1.
Kramer A, Lademann J, Bender C, et al: Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds. Clin Plasma Med 2013;1:11-18.
2.
Weltmann KD, Polak M, Masur K, et al: Plasma processes and plasma sources in medicine. Contrib Plasma Phys 2012;52:644-654.
3.
Bender C, Hübner NO, Weltmann KD, et al: Tissue tolerable plasma and polihexanide: are synergistic effects possible to promote healing of chronic wounds? In vivo and in vitro results; in Machala Z, Hensel K, Akishev Y (eds): Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Dordrecht, Springer, 2012, pp 321-334.
4.
Bender C, Partecke L, Kindel E, et al: The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicol In Vitro 2011;25:530-537.
5.
Emmert S, Brehmer F, Hänssle H, et al: Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clin Plasma Med 2013;1:24-29.
6.
Klebes M, Ulrich C, Kluschke F, et al: Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophotonics 2015;8:382-391.
7.
Müller G, Langer J, Siebert J, et al: Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 2014;27:1-8.
8.
Heinlin J, Zimmermann JL, Zeman F, et al: Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen 2013;21:800-807.
9.
Lademann O, Kramer A, Richter H, et al: Skin disinfection by plasma-tissue interaction: comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic. Skin Pharmacol Physiol 2011;24:284-288.
10.
Lademann O, Kramer A, Richter H, et al: Antisepsis of the follicular reservoir by treatment with tissue-tolerable plasma (TTP). Laser Phys Lett 2011;8:313-317.
11.
Lademann J, Richter H, Schanzer S, et al: Comparison of the antiseptic efficacy of tissue-tolerable plasma and an octenidine hydrochloride-based wound antiseptic on human skin. Skin Pharmacol Physiol 2012;25:100-106.
12.
Ulmer M, Lademann J, Patzelt A, et al: New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol 2014;27:283-292.
13.
Hübner NO, Matthes R, Koban I, et al: Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 2010;23(suppl 1):28-34.
14.
Koban I, Holtfreter B, Hübner NO, et al: Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol 2011;38:956-965.
15.
Koban I, Geisel MH, Holtfreter B, et al: Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent 2013;2013:573262.
16.
Fricke K, Koban I, Tresp H, et al: Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One 2012;7:e42539.
17.
Matthes R, Hübner NO, Bender C, et al: Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro. Skin Pharmacol Physiol 2014;27:148-157.
18.
von Woedtke T, Reuter S, Masur K, et al: Plasmas for medicine. Phys Rep 2013;530:291-320.
19.
Kramer A, Hübner NO, Weltmann KD, et al: Polypragmasia in the therapy of infected wounds - conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhhyg Interdiszip 2008;3:Doc13.
20.
Daeschlein G, Scholz S, Arnold A, et al: In vitro activity of atmospheric pressure plasma jet (APPJ) plasma against clinical isolates of Demodex folliculorum. IEEE Trans Plasma Sci 2010;38:2969-2973.
21.
Daeschlein G, Scholz S, von Woedtke T, et al: In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci 2011;39:815-821.
22.
Daeschlein G, von Woedtke T, Kindel E, et al: Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym 2010;7:224-230.
23.
Daeschlein G, Scholz S, Arnold A, et al: In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym 2012;9:380-389.
24.
Wiegand C, Beier O, Horn K, et al: Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures. Skin Pharmacol Physiol 2014;25:25-35.
25.
Burts ML, Alexeff I, Meek ET, et al: Use of atmospheric non-thermal plasma as a disinfectant for objects contaminated with methicillin-resistant Staphylococcus aureus. Am J Infect Control 2009;37:729-733.
26.
Cotter JJ, Maguire P, Soberon F, et al: Disinfection of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. J Hosp Infect 2011;78:204-207.
27.
Ermolaeva SA, Varfolomeev AF, Chernukha MY, et al: Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 2011;60:75-83.
28.
Kvam E, Davis B, Mondello F, et al: Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 2012;56:2028-2036.
29.
Joshi SG, Paff M, Friedman G, et al: Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am J Infect Control 2010;38:293-301.
30.
Holtfreter S, Grumann D, Schmudde M, et al: Clonal distribution of superantigen genes in clinical Staphylococcus aureus isolates. J Clin Microbiol 2007;45:2669-2680.
31.
Masiuk H, Kopron K, Grumann D, et al: Association of recurrent furunculosis with Panton-Valentine leukocidin and the genetic background of Staphylococcus aureus. J Clin Microbiol 2010;48:1527-1535.
32.
Völzke H, Alte D, Schmidt CO, et al: Cohort profile: the study of health in Pomerania. Int J Epidemiol 2011;40:294-307.
33.
Strommenger B, Kettlitz C, Weniger T, et al: Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 2006;44:2533-2540.
34.
Lindsay JA, Moore CE, Day NP, et al: Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 2006;188:669-676.
35.
Melles DC, Taylor KL, Fattom AI, et al: Serotyping of Dutch Staphylococcus aureus strains from carriage and infection. FEMS Immunol Med Microbiol 2008;52:287-292.
36.
Monecke S, Slickers P, Ehricht R: Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 2008;53:237-251.
37.
Luedicke C, Slickers P, Ehricht R, et al: Molecular fingerprinting of Staphylococcus aureus from bone and joint infections. Eur J Clin Microbiol Infect Dis 2010;29:457-463.
38.
Weltmann KD, Kindel E, Brandenburg R, et al: Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys 2009;49:631-640.
39.
Matthes R, Koban I, Bender C, et al: Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Process Polym 2013;10:161-166.
40.
Lee KY, Park BJ, Lee DH, et al: Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 2005;193:35-38.
41.
Maisch T, Shimizu T, Li YF, et al: Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 2012;7:e34610.
42.
Montie TC, Kelly-Wintenberg K, Roth JR: An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 2000;28:41-50.
43.
Dobrynin D, Fridman G, Friedman G, et al: Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 2009;11:115020-115046.
44.
von Woedtke T, Oehmigen K, Brandenburg R, et al: Plasma-liquid interactions: chemistry and antimicrobial effects; in Machala Z, Hensel K, Akishev Y (eds): Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Dordrecht, Springer, 2012, pp 67-78.
45.
Joaquin JC, Kwan C, Abramzon N, et al: Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? Microbiology 2009;155:724-732.
46.
Alldrick AJ, Smith JT: R-plasmid effects on bacterial multiplication and survival. Antonie Van Leeuwenhoek 1983;49:133-142.
47.
Martinez JL, Baquero F: Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 2002;15:647-679.
48.
Andersson DI, Hughes D: Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010;8:260-271.
49.
Lina G, Piemont Y, Godail-Gamot F, et al: Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999;29:1128-1132.
50.
Katayama Y, Ito T, Hiramatsu K: A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000;44:1549-1555.
51.
Novick RP, Ross HF, Projan SJ, et al: Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 1993;12:3967-3975.
52.
Pohlmann-Dietze P, Ulrich M, Kiser K, et al: Adherence of Staphylococcus aureus to endothelial cells: influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect Immun 2000;68:4865-4871.
53.
Luong T: Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect Immun 2002;70:444-450.
54.
Beenken KE, Dunman PM, McAleese F, et al: Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 2004;186:4665-4684.
55.
Cheung GYC, Wang R, Khan BA, et al: Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun 2011;79:1927-1935.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.