Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a ‘two-way road’ – from bench to bedside and backwards from bedside to bench.

1.
Wang Z, Wang G: APD: the Antimicrobial Peptide Database. Nucleic Acids Res 2004;32:590–592.
2.
Maroti G, Kereszt A, Kondorosi E, Mergaert P: Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 2011;162:363–374.
3.
Wang G, Li X, Wang Z: APD2: the updated antimicrobial Peptide Database and its application in peptide design. Nucleic Acids Res 2009;37:933–937.
4.
Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC: Human defensins. J Mol Med 2005;83:587–595.
5.
Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T: Host defense peptides in wound healing. Mol Med 2008;14:528–537.
6.
Schittek B, Paulmann M, Senyürek I, Steffen H: The role of antimicrobial peptides in human skin and skin infectious diseases. Infect Disord Drug Targets 2008;8:135–143.
7.
Schauber J, Gallo RL: Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008;122:261–266.
8.
Khandelia H, Ipsen JH, Mouritsen OG: The impact of peptides on lipid membranes. Biochim Biophys Acta 2008;1778:1528–1536.
9.
Hancock RE, Patrzykat A: Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2002;2:79–83.
10.
Bradshaw J: Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs 2003;17:233–240.
11.
Guiliani A, Pirri G, Nicoletto SF: Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2007;2:1–33.
12.
Mogi T, Kita K: Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009;66:3821–3826.
13.
Lai Y, Gallo RL: AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009;30:131–141.
14.
Kotlan B, Stroncek DF, Maricola FM: Turning laboratory findings into therapy: a marathon goal that has to be reached. Pol Arch Med Wewn 2009;119:586–593.
15.
Jung K, Mannello F, Lein M: Translating molecular medicine into clinical tools: doomed to fail by neglecting basic preanalytical principles. J Transl Med 2009;7:1–4.
16.
Plebani M, Marincola FM: Research translation: a new frontier for clinical laboratories. Clin Chem Lab Med 2006;44:1303–1312.
17.
Nussenblatt RB, Marincola FM, Schechter AN: Translational medicine – doing it backwards. J Transl Med 2010;8:12.
18.
Marincola FM: Translational medicine: a two-way road. J Transl Med 2003;1:1–2.
19.
Zasloff M: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84:5449–5453.
20.
Jacob L, Zasloff M: Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp 1994;186:197–216.
21.
Ge Y, MacDonald D, Henry MM, Hait HI, Nalson KA, Lipsky BA, Zasloff MA, Holroyd KJ: In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diag Microb Infect Dis 1999;35:45–53.
22.
Zairi A, Tangy F, Bouassida K, Hani K: Dermaseptins and magainins: antimicrobial peptides from frogs’ skin – new sources for a promising spermicides microbicides – a mini review. J Biomed Biotechnol 2009;2009:452567.
23.
Kruse T, Kristensen HH: Using anti-microbial host defense peptides as anti-infective and immunomodulatory agents. Expert Rev Anti Infect Ther 2008;6:887–895.
24.
Storm DR, Rosenthal KS, Swanson PE: Polymyxin and related peptide antibiotics. Annu Rev Biochem 1977;46:723–763.
25.
Brown JM, Dorman DC, Roy LP: Acute renal failure due to overdosage of colistin. Med J Aust 1970;2:923–934.
26.
Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE: Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 1970;72:857–868.
27.
Falagas ME, Kasiakou SK: Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 2006;10:R27.
28.
Dubos RJ, Cattaneo C: Studies on a bactericidal agent extracted from a soil bacillus. J Exp Med 1939;70:249–256.
29.
Franklin TJ, Snow GA (eds): Biochemistry of Antimicrobial Action. New York, Chapman and Hall, 1988, pp 61–64.
30.
Seoh SA, Busath D: The permeation properties of small organic cations in gramicidin A channels. Biophys J 1993;64:1017–1028.
31.
Voigt HU, Ehlers G: Tyrothricin: Renaissance eines Lokalantibiotikums Teil I. Dtsch Dermatolog 1989;37:647–650.
32.
Kretschmar M, Nichterlein T, Hof H, Burger KJ: Tyrothricin. Bakterizide Wirkung auf fakultativ pathogene grampositive aerobe Bakterien der Mundflora und MRSA. Chemother J 1995;4:156–159.
33.
Kretschmar M, Witte W, Hof H: Bacterial activity of tyrothricin against methicillin resistant Staphylococcus aureus with reduced susceptibility to mupirocin. Eur J Microbiol Infect Dis 1996;15:261–263.
34.
Ruckdeschel G, Beaufort F, Nahler G, Belzer O: In vitro antibacterial activity of gramicidin and tyrothricin. Arzneimittelforschung 1983;33:1620–1622.
35.
Kretschmar M, Nichterlein T, Nebe CT, Hof H, Burger KJ: Fungicidal effect of tyrothricin on Candida albicans. Mycoses 1996;39:45–50.
36.
Grossgebauer K, Hartmann D: Antiviral activity of tyrothricin against Sendai virus in suspension tests. Zentralbl Bakt, Parasitenkunde, Infektionskrankheiten und Hygiene, Reihe B 1978;166:434–442.
37.
Hartmann D, Grossgebauer K: Schutzversuche mit Tyrothricin an der Herpes-simplex-Virus-infizierten Maus. Arzneimittelforschung 1979;29:50–54.
38.
Bourinbaiar AS, Krasinski K, Borkowsky W: Anti-HIV effect of gramicidin in vitro: potential for spermicide use. Life Sci 1994;54:5–9.
39.
Muramatsu I, Sofuku S, Hagitani A: A new synthetic and antibiotic analog of gramicidin S, (4–5-aminovaleric acid)-gramicidin S. J Antibiot Tokyo 1972;25:189–190.
40.
Willenberg W: Zur Therapie akutentzündlicher Erkrankungen des Mund- und Rachenraumes. Zeitschr Allgemeinmed 1979;55:653–655.
41.
Lind HE, Swanton EM: Antibiot Chemother 1954;4:1161. Cited from Ruckdeschel G, Beaufort F, Nahler G, Belzer O: In vitro antibacterial activity of gramicidin and tyrothricin. Arzneimittelforschung 1983;33:1620–1622.
42.
Bayerl C, Völp A: Tyrothricin powder in the treatment of cutaneous lesions. Pharmazie 2004;59:864–868.
43.
Schröder JM, Harder J: Antimicrobial skin peptides and proteins. Cell Mol Life Sci 2006;63:469–486.
44.
Yamasaki K, Gallo RL: Antimicrobial peptides in human skin disease. Eur J Dermatol 2008;18:11–21.
45.
Reddy KVR, Yedery RD, Aranha C: Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004;24:536–547.
46.
Simmaco M, Mignogna G, Barra D: Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 1998;47:435–450.
47.
Albiol Matanic VC, Castilla V: Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 2004;23:382–389.
48.
Reddy KVR, Shahani SK, Meherij PK: Spermicidal activity of magainins: in-vitro and in-vivo studies. Contraception 1996;53:205–210.
49.
Imura Y, Choda N, Matsuzaki K: Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 2008;95:5757–5765.
50.
Gregory SM, Pokorny A, Almeida PFF: Magainin 2 revisited: a test for the all-or-none permeabilization of phospholipid vesicles. Biophys J 2009;96:116–131.
51.
Epand RF, Maloy WL, Ramamoorthy A, Epand RM: Probing the ‘charge cluster mechanism’ in amphipathic helical cationic antimicrobial peptides. Biochemistry 2010;49:4076–4084.
52.
Dempsey CE, Hawrani A, Howe RA, Walsh TR: Amphipathic antimicrobial peptides – from biophysics to therapeutics? Protein Pept Lett 2010;17:1334–1344.
53.
Huttner KM, Bevins CL: Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 1999;45:785–794.
54.
Mallow EB, Harris A, Salzman N, Russell JP, DeBerardinis RJ, Ruchelli E, Bevins CL: Human enteric defensins. Gene structure and developmental expression. J Biol Chem 1996;271:4038–4045.
55.
Svinarich DM, Gomez R, Romero R: Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 1997;176:470–475.
56.
Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S: Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect Immun 2010;78:3112–3117.
57.
Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286:498–502.
58.
Carretero M, Del Río M, García M, Escámez MJ, Mirones I, Rivas L, Balague C, Jorcano JL, Larcher F: A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J 2004;18:1931–1933.
59.
Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, Dobozy A, Kemeny L: Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbes Infect 2005;7:1117–1127.
60.
Nijnik A, Hancock RE: The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 2009;16:41–47.
61.
Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C: Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001;2:1133–1137.
62.
Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B: Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol 2004;151:534–539.
63.
Lai YP, Peng YF, Zuo Y, Huang J, Wang LF, Wu ZR: Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem Biophys Res Commun 2005;328:243–250.
64.
Harder J, Schröder JM: RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 2002;277:46779–46784.
65.
Harder J, Schröder JM: Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 2005;77:476–486.
66.
Rudolph B, Podschun R, Sahly H, Schubert S, Schröder JM, Harder J: Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 2006;50:3194–3196.
67.
Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroeder JM: Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 2005;6:57–64.
68.
Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B, et al: Molecular cloning, occurrence, and expression of a novel partially secreted protein ‘psoriasin’ that is highly up-regulated in psoriatic skin. J Invest Dermatol 1991;97:701–712.
69.
Schön MP, Boehncke WH: Psoriasis. N Engl J Med 2005;352:1899–1912.
70.
Christophers E, Henseler T: Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res 1987;279(suppl):S48–S51.
71.
Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY: Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003;171:3262–3269.
72.
Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347:1151–1160.
73.
Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T: Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 2002;118:275–281.
74.
Erdag G, Morgan JR: Interleukin-1alpha and interleukin-6 enhance the antibacterial properties of cultured composite keratinocyte grafts. Ann Surg 2002;235:113–124.
75.
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M: Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–569.
76.
Blount BW, Pelletier AP: Rosacea: a common yet commonly overlooked condition. Am Fam Physician 2002;66:435–440.
77.
Berg M, Liden S: An epidemiological study of rosacea. Acta Derm Venereol 1989;69:419–423.
78.
Eiseman AS: The ocular manifestations of atopic dermatitis and rosacea. Curr Allergy Asthma Rep 2006;6:292–298.
79.
Korting HC, Schöllmann C: Tetracycline actions relevant to rosacea treatment. Skin Pharmacol Physiol 2009;22:287–294.
80.
Schauber J, Ruzicka T, Rupec RA: Cathelicidin LL-37. Ein zentraler Faktor in der Pathogenese inflammatorischer Dermatosen. Hautarzt 2008;59:72–74.
81.
Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL: Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 2007;13:975–980.
82.
Degitz K,Placzek M, Borelle C, Plewig G: Pathophysiologie der Akne. J Dtsch Dermatol Ges 2007;5:316–323.
83.
Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L: Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like-receptors. J Invest Dermatol 2005;124:931–938.
84.
Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN: Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 2004;48:3112–3118.
85.
Melo MN, Dugourd D, Castanho MA: Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 2006;1:201–207.
86.
Cork MJ, Danby SG, Vasiloupoulos Y, Hadgraft J, Lane E, Moustafa M, Guy RH, MacGowan AL, Tazi-Ahnini R, Ward SJ: Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009;129:1892–1908.
87.
Boguniewicz M, Leung DYM: Recent insights into atopic dermatitis and implications for management of infectious complications. J Allergy Clin Immunol 2010;125:4–13.
88.
de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC, Schalkwijk J: High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. Invest Dermatol 2005;125:1163–1173.
89.
Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, Khatcherian A, Novitskaya I, Carucci JA, Bergman R, Krueger JG: Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol 2008;181:7420–7427.
90.
Howell MD: The role of human beta defensins and cathelicidins in atopic dermatitis. Curr Opin Allergy Clin Immunol 2007;7:413–417.
91.
Gläser R, Meyer-Hoffert U, Harder J, Cordes J, Wittersheim M, Kobliakova J, Fölster-Holst R, Proksch E, Schröder JM, Schwarz T: The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J Invest Dermatol 2009;129:641–649.
92.
Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, Fölster-Holst R, Proksch E, Schröder JM, Schwarz T, Gläser R: Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 2010;130:1355–1364.
93.
Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R: An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003;111:1665–1672.
94.
Oono T, Huh WK, Shirafuji Y, Akiyama H, Iwatsuki K: Localization of human beta-defensin-2 and human neutrophil peptides in superficial folliculitis. Br J Dermatol 2003;148:188–191.
95.
Kreuter A, Huyn J, Skrygan M, Sommer A, Bastian A, Altmeyer P, Gambichler T: Ultraviolet A1-induced downregulation of human beta-defensins and interleukin-8 correlates with clinical improvement in localized scleroderma. Br J Dermatol 2006;155:600–607.
96.
Escher N, Spies-Weisshart B, Kaatz M, Melle C, Bleul A, Driesch D, Wollina U, von Eggeling F: Identification of HNP3 as a tumour marker in CD4+ and CD4– lymphocytes of patients with cutaneous T-cell lymphoma. Eur J Cancer 2006;42:249–255.
97.
Conner K, Nern K, Rudisill J, O’Grady T, Gallo RL: The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 2002;47:347–350.
98.
Brogden NK, Brogden KA: Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011;38:217–225.
99.
Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S: Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 2011;216:322–333.
100.
Guarna M, Coulson M, Rubinchik E: Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett 2006;257:1–6.
101.
Risso A, Zanetti M, Gennaro R: Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 1998;189:107–115.
102.
Steinstraesser L, Burghard O, Menzek J, Fan MH, Merry A, Remick DI, Su GL, Steinau HU, Wang SC: Protegerin-1 increases bacterial clearance in sepsis but decreases survival. Crit Care Med 2003;31:221–226.
103.
Jacobsen F, Mohammadi-Tabrisi A, Hirsch T, Mittler D, Mygind PH, Sonksen CP, Raventos D, Kristensen HH, Gatermann S, Lehnhardt M, Daigeler A, Steinau HU, Steinstraesser L: Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J Antimicrob Chemother 2007;59:493–549.
104.
Li Q, Zhou Y, Dong K, Guo X: Potential therapeutic efficacy of a bacterial-immunomodulatory fusion peptide against methicillin-resistant Staphylococcus aureus skin infection. Applied Microbiol Biotechnol 2010;86:305–309.
105.
Ciornei CD, Sigurdadottir T, Schmidtchen A, Bodelsson M: Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 2005;49:2845–2850.
106.
Sigurdadottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen Al, Bodelsson M: In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother 2006;50:2983–2989.
107.
Shai Y: From innate immunity to de-novo designed antimicrobial peptides. Curr Pharm Des 2002;8:715–725.
108.
Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Orlando F, Silvestri C, Bozzi A, Di Giulio A, Luzi C, Mangoni ML, Barra D, Saba V, Scalise G, Rinaldi AC: Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria. Antimicrob Agents Chemother 2006;50:2478–2486.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.