Skin is complex and comprised of distinct layers, each layer with unique architecture and immunologic functions. Cells within these layers produce differing amounts of antimicrobial peptides and lipids (sphingoid bases and sebaceous fatty acids) that limit colonization of commensal and opportunistic microorganisms. Furthermore, antimicrobial peptides and lipids have distinct, concentration-dependent ancillary innate and adaptive immune functions. At 0.1–2.0 µM, antimicrobial peptides induce cell migration and adaptive immune responses to coadministered antigens. At 2.0–6.0 µM, they induce cell proliferation and enhance wound healing. At 6.0–12.0 µM, they can regulate chemokine and cytokine production and at their highest concentrations of 15.0–30.0 µM, antimicrobial peptides can be cytotoxic. At 1–100 nM, lipids enhance cell migration induced by chemokines, suppress apoptosis, and optimize T cell cytotoxicity, and at 0.3–1.0 µM they inhibit cell migration and attenuate chemokine and pro-inflammatory cytokine responses. Recently, many antimicrobial peptides and lipids at 0.1–2.0 µM have been found to attenuate the production of chemokines and pro-inflammatory cytokines to microbial antigens. Together, both the antimicrobial and the anti-inflammatory activities of these peptides and lipids may serve to create a strong, overlapping immunologic barrier that not only controls the concentrations of cutaneous commensal flora but also the extent to which they induce a localized inflammatory response.

1.
Michaels AS, Chandrasekaran SK, Shaw JE: Drug permeation through human skin: theory and in vitro experimental measurement. AIChE J 1975;21:985–996.
2.
Schmid-Wendtner MH, Korting HC: The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 2006;19:296–302.
3.
Rippke F, Schreiner V, Schwanitz HJ: The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol 2002;3:261–272.
4.
Schroder JM, Harder J: Antimicrobial skin peptides and proteins. Cell Mol Life Sci 2006;63:469–486.
5.
Grice EA, Segre JA: The skin microbiome. Nat Rev Microbiol 2011;9:244–253.
6.
Tannock G: Normal Microflora. New York, Chapman & Hall, 1995.
7.
Bratt CL, Wertz P, Drake D, Dawson DV, Brogden KA: Antimicrobial lipids of the skin and tear film; in Thormar H (ed): Lipids and Essential Oils as Antimicrobial Agents. Chichester, Wiley, 2011, pp 99–121.
8.
Hochedez P, Caumes E: Common skin infections in travelers. J Travel Med 2008;15:252–262.
9.
Harries MJ, Lear JT: Occupational skin infections. Occup Med (Lond) 2004;54:441–449.
10.
Wertz PW, Downing DT: Ceramidase activity in porcine epidermis. FEBS Lett 1990;268:110–112.
11.
Yada Y, Higuchi K, Imokawa G: Purification and biochemical characterization of membrane-bound epidermal ceramidases from guinea pig skin. J Biol Chem 1995;270:12677–12684.
12.
Gray GM, Yardley HJ: Different populations of pig epidermal cells: isolation and lipid composition. J Lipid Res 1975;16:441–447.
13.
Law S, Wertz PW, Swartzendruber DC, Squier CA: Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol 1995;40:1085–1091.
14.
Ponec M, Weerheim A, Lankhorst P, Wertz P: New acylceramide in native and reconstructed epidermis. J Invest Dermatol 2003;120:581–588.
15.
James AT, Wheatley VR: Studies of sebum. 6. The determination of the component fatty acids of human forearm sebum by gas-liquid chromatography. Biochem J 1956;63:269–273.
16.
Haahti F: Major lipid constituents of human skin surface with special reference to gas-chromatographic methods. Scand J Clin Lab Invest 1961;59(suppl):1–108.
17.
Niyonsaba F, Ogawa H: Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 2005;40:157–168.
18.
Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I: Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 2002;14:421–426.
19.
Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I: Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 2001;31:1066–1075.
20.
Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, Saito H, Nagaoka I, Ikeda S, Okumura K, Ogawa H: Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 2007;37:434–444.
21.
Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H: The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol 2005;175:1776–1784.
22.
Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H: Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007;127:594–604.
23.
Kesting MR, Stoeckelhuber M, Holzle F, Mucke T, Neumann K, Woermann K, Jacobsen F, Steinstraesser L, Wolff KD, Loeffelbein DJ, Rohleder NH: Expression of antimicrobial peptides in cutaneous infections after skin surgery. Br J Dermatol 2010;163:121–127.
24.
Dressel S, Harder J, Cordes J, Wittersheim M, Meyer-Hoffert U, Sunderkotter C, Glaser R: Differential expression of antimicrobial peptides in margins of chronic wounds. Exp Dermatol 2010;19:628–632.
25.
Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347:1151–1160.
26.
Hata TR, Gallo RL: Antimicrobial peptides, skin infections, and atopic dermatitis. Semin Cutan Med Surg 2008;27:144–150.
27.
Bucki R, Leszczynska K, Namiot A, Sokolowski W: Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp 2010;58:15–25.
28.
Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH: FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 1995;92:195–199.
29.
Senyurek I, Paulmann M, Sinnberg T, Kalbacher H, Deeg M, Gutsmann T, Hermes M, Kohler T, Gotz F, Wolz C, Peschel A, Schittek B: Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob Agents Chemother 2009;53:2499–2509.
30.
Tomasinsig L, Zanetti M: The cathelicidins – structure, function and evolution. Curr Protein Pept Sci 2005;6:23–34.
31.
Yang D, Oppenheim JJ: Multiple functions of antimicrobial peptides in host immunity; in Devine DA, Hancock REW (eds): Mammalian Host Defense Peptides. Cambridge, Cambridge University Press, 2004, pp 39–68.
32.
Burton MF, Steel PG: The chemistry and biology of LL-37. Nat Prod Rep 2009;26:1572–1584.
33.
Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I: A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 2002;106:20–26.
34.
Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Ogawa H: Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 2007;157:1124–1131.
35.
Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL: Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 2007;13:975–980.
36.
Yamasaki K, Gallo RL: The molecular pathology of rosacea. J Dermatol Sci 2009;55:77–81.
37.
Steffen H, Rieg S, Wiedemann I, Kalbacher H, Deeg M, Sahl HG, Peschel A, Gotz F, Garbe C, Schittek B: Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother 2006;50:2608–2620.
38.
Rieg S, Seeber S, Steffen H, Humeny A, Kalbacher H, Stevanovic S, Kimura A, Garbe C, Schittek B: Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. J Invest Dermatol 2006;126:354–365.
39.
Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C: Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001;2:1133–1137.
40.
Niyonsaba F, Suzuki A, Ushio H, Nagaoka I, Ogawa H, Okumura K: The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br J Dermatol 2009;160:243–249.
41.
Niyonsaba F, Hattori F, Maeyama K, Ogawa H, Okamoto K: Induction of a microbicidal protein psoriasin (S100A7), and its stimulatory effects on normal human keratinocytes. J Dermatol Sci 2008;52:216–219.
42.
Zheng Y, Niyonsaba F, Ushio H, Ikeda S, Nagaoka I, Okumura K, Ogawa H: Microbicidal protein psoriasin is a multifunctional modulator of neutrophil activation. Immunology 2008;124:357–367.
43.
Mildner M, Stichenwirth M, Abtin A, Eckhart L, Sam C, Glaser R, Schroder JM, Gmeiner R, Mlitz V, Pammer J, Geusau A, Tschachler E: Psoriasin (S100A7) is a major Escherichia coli-cidal factor of the female genital tract. Mucosal Immunol 2010;3:602–609.
44.
Torrent M, Badia M, Moussaoui M, Sanchez D, Nogues MV, Boix E: Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. FEBS J 2010;277:1713–1725.
45.
Lee DY, Huang CM, Nakatsuji T, Thiboutot D, Kang SA, Monestier M, Gallo RL: Histone H4 Is a major component of the antimicrobial action of human sebocytes. J Invest Dermatol 2009;129:2489–2496.
46.
Brogden KA, Guthmiller JM, Salzet M, Zasloff M: The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 2005;6:558–564.
47.
Takahashi K, Nakanishi S, Imamura S: Direct effects of cutaneous neuropeptides on adenylyl cyclase activity and proliferation in a keratinocyte cell line: stimulation of cyclic AMP formation by CGRP and VIP/PHM, and inhibition by NPY through G protein-coupled receptors. J Invest Dermatol 1993;101:646–651.
48.
Kapas S, Tenchini ML, Farthing PM: Regulation of adrenomedullin secretion in cultured human skin and oral keratinocytes. J Invest Dermatol 2001;117:353–359.
49.
Lambert RW, Campton K, Ding W, Ozawa H, Granstein RD: Langerhans cell expression of neuropeptide Y and peptide YY. Neuropeptides 2002;36:246–251.
50.
Allaker RP, Zihni C, Kapas S: An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol Med Microbiol 1999;23:289–293.
51.
Hansen CJ, Burnell KK, Brogden KA: Antimicrobial activity of Substance P and Neuropeptide Y against laboratory strains of bacteria and oral microorganisms. J Neuroimmunol 2006;177:215–218.
52.
Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM: Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol 2001;167:623–627.
53.
Tang L, Wu JJ, Ma Q, Cui T, Andreopoulos FM, Gil J, Valdes J, Davis SC, Li J: Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization. Br J Dermatol 2010;163:38–47.
54.
Kabara JJ, Vrable R: Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids 1977;12:753–759.
55.
Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP: Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 1972;2:23–28.
56.
Raychowdhury MK, Goswami R, Chakrabarti P: Effect of unsaturated fatty acids in growth inhibition of some penicillin-resistant and sensitive bacteria. J Appl Bacteriol 1985;59:183–188.
57.
Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H: In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 2001;45:3209–3212.
58.
Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H: Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 2001;109:670–678.
59.
Drake DR, Brogden KA, Dawson DV, Wertz PW: Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 2008;49:4–11.
60.
Thormar H, Hilmarsson H: The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 2007;150:1–11.
61.
Bibel DJ, Aly R, Shinefield HR: Antimicrobial activity of sphingosines. J Invest Dermatol 1992;98:269–273.
62.
Bibel DJ, Aly R, Shah S, Shinefield HR: Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol 1993;73:407–411.
63.
Bibel DJ, Aly R, Shinefield HR: Topical sphingolipids in antisepsis and antifungal therapy. Clin Exp Dermatol 1995;20:395–400.
64.
Payne CD, Ray TL, Downing DT: Cholesterol sulfate protects Candida albicans from inhibition by sphingosine in vitro. J Invest Dermatol 1996;106:549–552.
65.
Martino A: Sphingosine 1-phosphate as a novel immune regulator of dendritic cells. J Biosci 2007;32:1207–1212.
66.
Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, Piccioni MS, Valente E, Bonanno E, De Vito P, Baldini PM, Spagnoli LG, Colizzi V, Fraziano M: Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis 2004;189:2129–2138.
67.
Burtenshaw JM: The mechanisms of self-disinfection of the human skin and its appendages. J Hyg (Lond) 1942;42:184–209.
68.
Rothman S, Lorincz AL: Defense mechanisms of the skin. Annu Rev Med 1963;14:215–242.
69.
Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW: Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 2012;56:1157–1161.
70.
Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM: Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol 2009;129:2480–2488.
71.
Galbraith H, Miller TB, Paton AM, Thompson JK: Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 1971;34:803–813.
72.
Kabara JJ: Fatty acids and derivatives as antimicrobial agents: a review; in Kabara JJ (ed): The Pharmacological Effect of Lipids. Champaign, The American Oil Chemists’ Society, 1978, pp 1–14.
73.
Desbois AP, Smith VJ: Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010;85:1629–1642.
74.
Robertson E, Brogden K, Wertz P, Dawson D, Drake D: Antimicrobial activity of human skin lipids. 83rd General Session IADR meeting, Baltimore, 2005.
75.
Robertson E, Burnell K, Qian F, Brogden KA, Wertz P, Drake D: Synergistic activity of human skin lipids and LL-37. 84th General Session IADR meeting, Orlando, 2006.
76.
Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS: Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 2002;72:167–174.
77.
Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA, Carriero MV: Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 2009;30:267–272.
78.
Boniotto M, Jordan WJ, Eskdale J, Tossi A, Antcheva N, Crovella S, Connell ND, Gallagher G: Human beta-defensin 2 induces a vigorous cytokine response in peripheral blood mononuclear cells. Antimicrob Agents Chemother 2006;50:1433–1441.
79.
Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, Jia HP, Tack BF, McCray PB: Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 2003;18:95–99.
80.
Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP: The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004;172:1146–1156.
81.
Kohlgraf KG, Ackermann A, Lu X, Burnell K, Belanger M, Cavanaugh JE, Xie H, Progulske-Fox A, Brogden KA: Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice. Future Microbiol 2010;5:115–125.
82.
Lillard JW Jr, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR: Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci USA 1999;96:651–656.
83.
Nishimura M, Abiko Y, Kurashige Y, Takeshima M, Yamazaki M, Kusano K, Saitoh M, Nakashima K, Inoue T, Kaku T: Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J Dermatol Sci 2004;36:87–95.
84.
Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Belanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA: Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol 2008;86:643–649.
85.
van Wetering S, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS: Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res 2002;51:8–15.
86.
Yin J, Yu FS: LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas. Invest Ophthalmol Vis Sci 2010;51:1891–1897.
87.
Bowdish DM, Davidson DJ, Hancock RE: A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 2005;6:35–51.
88.
Klee SK, Farwick M, Lersch P: The effect of sphingolipids as a new therapeutic option for acne treatment. Basic Clin Dermatol 2007;40:155–156.
89.
Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M: Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum 2010;62:2117–2126.
90.
Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996;381:800–803.
91.
Goetzl EJ, Graler MH: Sphingosine 1-phosphate and its type 1 G protein-coupled receptor: trophic support and functional regulation of T lymphocytes. J Leukoc Biol 2004;76:30–35.
92.
Graeler M, Goetzl EJ: Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J 2002;16:1874–1878.
93.
Oz-Arslan D, Ruscher W, Myrtek D, Ziemer M, Jin Y, Damaj BB, Sorichter S, Idzko M, Norgauer J, Maghazachi AA: IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids. J Leukoc Biol 2006;80:287–297.
94.
Pavicic T, Wollenweber U, Farwick M, Korting HC: Anti-microbial and -inflammatory activity and efficacy of phytosphingosine: an in vitro and in vivo study addressing acne vulgaris. Int J Cosmet Sci 2007;29:181–190.
95.
Pyne S, Pyne NJ: Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000;349:385–402.
96.
Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, Van Brocklyn JR, Wang F: Sphingosine-1-phosphate in cell growth and cell death. Ann NY Acad Sci 1998;845:11–18.
97.
Mathison RD, Davison JS, Befus AD, Gingerich DA: Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein. J Inflamm (Lond) 2010;7:49.
98.
Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE: The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002;169:3883–3891.
99.
Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE: Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006;176:2455–2464.
100.
Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D: Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 2009;390:295–303.
101.
Baveye S, Elass E, Mazurier J, Spik G, Legrand D: Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med 1999;37:281–286.
102.
Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E: Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 2002;8:403–417.
103.
Shi J, Aono S, Lu W, Ouellette AJ, Hu X, Ji Y, Wang L, Lenz S, van Ginkel FW, Liles M, Dykstra C, Morrison EE, Elson CO: A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J Immunol 2007;179:1245–1253.
104.
Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA: Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol 2010;5:99–113.
105.
Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ, Barr TA, Campopiano DJ, Gray M: Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 2009;183:2122–2132.
106.
Semple F, Macpherson H, Webb S, Cox SL, Mallin LJ, Tyrrell C, Grimes GR, Semple CA, Nix MA, Millhauser GL, Dorin JR: Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol 2011;41:3291–3300.
107.
Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, Gray M, Davidson DJ, Dorin JR: Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 2010;40:1073–1078.
108.
Zouboulis CC: Acne and sebaceous gland function. Clin Dermatol 2004;22:360–366.
109.
Zouboulis CC, Baron JM, Bohm M, Kippenberger S, Kurzen H, Reichrath J, Thielitz A: Frontiers in sebaceous gland biology and pathology. Exp Dermatol 2008;17:542–551.
110.
Sinha VR, Kaur MP: Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 2000;26:1131–1140.
111.
Choi EH, Lee SH, Ahn SK, Hwang SM: The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Skin Pharmacol Appl Skin Physiol 1999;12:326–335.
112.
Prausnitz MR, Langer R: Transdermal drug delivery. Nat Biotechnol 2008;26:1261–1268.
113.
Park KY, Kim DH, Jeong MS, Li K, Seo SJ: Changes of antimicrobial peptides and transepidermal water loss after topical application of tacrolimus and ceramide-dominant emollient in patients with atopic dermatitis. J Korean Med Sci 2010;25:766–771.
114.
Elias PM: The skin barrier as an innate immune element. Semin Immunopathol 2007;29:3–14.
115.
Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, Choi EH, Kim DK, Schroder JM, Feingold KR, Elias PM: Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol 2008;128:917–925.
116.
Aberg KM, Radek KA, Choi EH, Kim DK, Demerjian M, Hupe M, Kerbleski J, Gallo RL, Ganz T, Mauro T, Feingold KR, Elias PM: Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J Clin Invest 2007;117:3339–3349.
117.
Ahrens K, Schunck M, Podda GF, Meingassner J, Stuetz A, Schroder JM, Harder J, Proksch E: Mechanical and metabolic injury to the skin barrier leads to increased expression of murine beta-defensin-1, -3, and -14. J Invest Dermatol 2011;131:443–452.
118.
Feingold KR: Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007;48:2531–2546.
119.
Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR: Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 1992;89:530–538.
120.
Mao-Qiang M, Mauro T, Bench G, Warren R, Elias PM, Feingold KR: Calcium and potassium inhibit barrier recovery after disruption, independent of the type of insult in hairless mice. Exp Dermatol 1997;6:36–40.
121.
Elias PM: Stratum corneum defensive functions: an integrated view. J Invest Dermatol 2005;125:183–200.
122.
Menon GK, Feingold KR, Elias PM: Lamellar body secretory response to barrier disruption. J Invest Dermatol 1992;98:279–289.
123.
Harris IR, Farrell AM, Grunfeld C, Holleran WM, Elias PM, Feingold KR: Permeability barrier disruption coordinately regulates mRNA levels for key enzymes of cholesterol, fatty acid, and ceramide synthesis in the epidermis. J Invest Dermatol 1997;109:783–787.
124.
Menon GK, Feingold KR, Mao-Qiang M, Schaude M, Elias PM: Structural basis for the barrier abnormality following inhibition of HMG CoA reductase in murine epidermis. J Invest Dermatol 1992;98:209–219.
125.
Feingold KR, Man MQ, Proksch E, Menon GK, Brown BE, Elias PM: The lovastatin-treated rodent: a new model of barrier disruption and epidermal hyperplasia. J Invest Dermatol 1991;96:201–209.
126.
Elias PM, Tsai J, Menon GK, Holleran WM, Feingold KR: The potential of metabolic interventions to enhance transdermal drug delivery. J Investig Dermatol Symp Proc 2002;7:79–85.
127.
Oren A, Ganz T, Liu L, Meerloo T: In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 2003;74:180–182.
128.
Wood LC, Elias PM, Calhoun C, Tsai JC, Grunfeld C, Feingold KR: Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis. J Invest Dermatol 1996;106:397–403.
129.
Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR: Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest 1992;90:482–487.
130.
Choi EH, Kim MJ, Yeh BI, Ahn SK, Lee SH: Iontophoresis and sonophoresis stimulate epidermal cytokine expression at energies that do not provoke a barrier abnormality: lamellar body secretion and cytokine expression are linked to altered epidermal calcium levels. J Invest Dermatol 2003;121:1138–1144.
131.
Huh WK, Oono T, Shirafuji Y, Akiyama H, Arata J, Sakaguchi M, Huh NH, Iwatsuki K: Dynamic alteration of human beta-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin. J Mol Med (Berl) 2002;80:678–684.
132.
Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T: Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 2002;118:275–281.
133.
Grubauer G, Feingold KR, Harris RM, Elias PM: Lipid content and lipid type as determinants of the epidermal permeability barrier. J Lipid Res 1989;30:89–96.
134.
Banks SL, Paudel KS, Brogden NK, Loftin CD, Stinchcomb AL: Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res 2011;28:1211–1219.
135.
Toebak MJ, de Rooij J, Moed H, Stoof TJ, von Blomberg BM, Bruynzeel DP, Scheper RJ, Gibbs S, Rustemeyer T: Differential suppression of dendritic cell cytokine production by anti-inflammatory drugs. Br J Dermatol 2008;158:225–233.
136.
Krishnakumari V, Rangaraj N, Nagaraj R: Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob Agents Chemother 2009;53:256–260.
137.
Dhople V, Krukemeyer A, Ramamoorthy A: The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 2006;1758:1499–1512.
138.
Joly S, Maze C, McCray PB Jr, Guthmiller JM: Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 2004;42:1024–1029.
139.
Zou G, de Leeuw E, Li C, Pazgier M, Zeng P, Lu WY, Lubkowski J, Lu W: Toward understanding the cationicity of defensins. Arg and Lys versus their noncoded analogs. J Biol Chem 2007;282:19653–19665.
140.
Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M, Naclerio G, Cassiman JJ, Pedone C, Castaldo G, Salvatore F: Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 2010;54:2312–2322.
141.
Miyasaki KT, Bodeau AL, Ganz T, Selsted ME, Lehrer RI: In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun 1990;58:3934–3940.
142.
Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M: Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 2005;55:888–896.
143.
Diamond G, Beckloff N, Ryan LK: Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 2008;87:915–927.
144.
Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y: Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res 2007;42:410–419.
145.
Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI: Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998;42:2206–2214.
146.
Saito H, Tomioka H, Yoneyama T: Growth of group IV mycobacteria on medium containing various saturated and unsaturated fatty acids. Antimicrob Agents Chemother 1984;26:164–169.
147.
Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H: Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 2004;27:1321–1326.
148.
Bratt CL, Walters K, Dawson DV, Drake D, Brogden KA, Wertz P: Susceptibility of Porphyromonas gingivalis to oral lipids and ultrastructural damage. J Dent Res 2011;90(Spec Issue A):286.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.