Abstract
The objective of this study was to investigate the effect of sebum on drug transport across the human stratum corneum (SC) in vivo for two model compounds, 4-cyanophenol (CP) and cimetidine (CM), of different lipophilicity and molecular size by utilizing noninvasive tape-stripping techniques, in conjunction with an unsteady-state diffusion model for data analysis. The results demonstrated that the SC permeability of the relatively hydrophilic CM on the forehead may be as much as four times the permeability on the forearm. The administration of sebum supplementation to the forearm increased the SC permeability of CM more than threefold, but did not have the same effect with regard to CP. Removal of sebum from the forehead demonstrated a small but significant effect (-22%) on the SC permeability of CM. The presence of sebum on the forehead or forearm increased the diffusion of both molecules, but the effect on partition varied between sites and drugs. The change in the SC permeability of the relatively hydrophilic drug using sebum treatment may be attributable to the altered barrier function of the SC due to the disordering structures of the intercellular lipid molecules.