The stratum corneum (SC) represents the outermost layer of the mammalian skin, exhibits the main skin barrier and plays an important role in the water penetration pathway through the SC. Knowing the structure and properties of the SC at the molecular level is essential for studying drug penetration through the SC and for the development of new dermal drug delivery systems. Therefore, research interest is focused on the SC lipid matrix and on water diffusion through it. Thus, the ultimate aim is to design a lipid mixture that mimics the barrier properties of the human SC to a high extent and that can substitute the SC in drug delivery systems. This review summarizes various studies performed on either isolated animal or human ceramide based SC model systems, coming to the result that using synthetic lipids with a well-defined architecture allows good extrapolation to the in vivo situation. This review is the continuation of part 1 that is focused on a detailed description of the thermotropic and/or lyotropic phase behaviour of single ceramide types obtained by various experimental techniques. The objective of part 2 is to reflect the numerous studies on SC lipid model systems, namely binary, ternary and multicomponent systems, during the last decade. In this context, neutron diffraction as a prospective tool for analyzing the internal membrane structure is addressed in particular. Based on these new insights, current SC models are presented, whose validations are still under discussion. A profound knowledge about SC lipid organization at the molecular level is still missing.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.