There is increasing interest among functional neurosurgeons in the potential for novel therapies to impact upon diseases beyond movement disorders and pain. A target of increasing interest is the nucleus accumbens (NAc), which has long been studied as a key brain region mediating a variety of behaviors, including reward and satisfaction. As such, focal modulation of the biology of the NAc with deep brain stimulation or novel biological therapies such as gene therapy or cell transplantation could have a major impact upon disorders such as depression and drug addiction. In order to both develop appropriate therapies and then deliver them in an effective fashion, a thorough understanding of the biology, physiology, and anatomy of the NAc is critical. Here, we review the existing literature regarding several areas critical to the development of new therapies, including the known pharmacology, physiology, and connectivity of the NAc, as well as evidence supporting the potential for various NAc surgical therapies in animal models. We then review the relevant anatomy of the NAc, with particular attention to the surgical anatomy, imaging, and targeting necessary to facilitate a proper localization and delivery of new agents to this region. The NAc is a fascinating and potentially rich target for stereotactic neurosurgical intervention, and analysis of existing information regarding all aspects of this structure should help potentiate therapeutic advances and reduce complications from future studies of neurosurgical intervention in this region for a variety of disorders.

1.
Ziehen T: Das Zentralnervensystem der Monotremen und Marsupialier. Jena, Fischer, 1904.
2.
Koikegami H, Hirata Y, Oguma J: Studies on the paralimbic brain structures. Psychiatry Clin Neurosci 1967;21:151-180.
[PubMed]
3.
Nieto A, Mexicano G, Cappello S, Contreras CM, Nieto D: Projections of the nucleus accumbens in the cat. Jpn J Psychiatry Neurol 1989;43:105-112.
[PubMed]
4.
Kappers CUA, Theunissen WF: Die Phylogenese des Rhinencephalons des Corpus striatum und der Vorderhirnkommissuren. Leipzig, W. Klingkardt, 1908.
5.
Johnston JB: The morphology of the septum, hippocampus, and pallial commissures in reptiles and mammals. J Comp Neurol 1913;23:371-478.
6.
Johnston JB: Further contributions to the study of the evolution of the forebrain. J Comp Neurol 1923;35:337-481.
7.
Herrick CJ: Brains of Rats and Men. University of Chicago Press, 1926.
8.
Heimer L, Switzer RD, Van Hoesen GW: Ventral striatum and ventral pallidum: components of the motor system? Trends Neurosci 1982;5:83-87.
9.
Nauta WJ, Smith GP, Faull RL, Domesick VB: Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 1978;3:385-401.
[PubMed]
10.
Parent A, Olivier A: Comparative histochemical study of the corpus striatum. J Hirnforsch 1970;12:73-81.
[PubMed]
11.
Herkenham M, Pert CB: Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 1981;291:415-418.
[PubMed]
12.
Pert CB, Kuhar MJ, Snyder SH: Opiate receptor: autoradiographic localization in rat brain. Proc Natl Acad Sci U S A 1976;73:3729-3733.
[PubMed]
13.
Atweh SF, Kuhar MJ: Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 1977;134:393-405.
[PubMed]
14.
Rotter A, et al: Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain. Brain Res 1979;180:141-165.
[PubMed]
15.
Wamsley JK, Zarbin MA, Birdsall NJ, Kuhar MJ: Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites. Brain Res 1980;200:1-12.
[PubMed]
16.
Murrin LC, Gale K, Kuhar MJ: Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: effects of lesions. Eur J Pharmacol 1979;60:229-235.
[PubMed]
17.
Swanson LW, Cwan WM: A note on the connections and development of the nucleus accumbens. Brain Res 1975;92:324-330.
[PubMed]
18.
Ten Donkelaar HJ, Dederen PJ: Neurogenesis in the basal forebrain of the Chinese hamster (Cricetulus griseus). I. Time of neuron origin. Anat Embryol 1979;56:331-348.
[PubMed]
19.
Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C: Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 1991;41:89-125.
[PubMed]
20.
Lammers GJ, Gribnau AA, ten Donkelaar HJ: Neurogenesis in the basal forebrain in the Chinese hamster (Cricetulus griseus). II. Site of neuron origin: morphogenesis of the ventricular ridges. Anat Embryol 1980;158:193-211.
[PubMed]
21.
White LE: Development and morphology of human nucleus accumbens; in Chronister RB, De France JF (eds): The Neurobiology of the Nucleus Accumbens. Brunswick, Haer Institute, 1981, pp 198-209.
22.
Brand S, Rakic P: Neurogenesis of the nucleus accumbens septi and neighboring septal nuclei in the rhesus monkey: a combined [3H]thymidine and electron microscopic study. Neuroscience 1980;5:2125-2138.
[PubMed]
23.
Das GD, Altman J: Postnatal neurogenesis in the caudate nucleus and nucleus accumbens septi in the rat. Brain Res 1970;21:122-127.
[PubMed]
24.
Marchand R, Lajoie L: Histogenesis of the striopallidal system in the rat. Neurogenesis of its neurons. Neuroscience 1986;17:573-590.
[PubMed]
25.
Bayer S: A correlated study of neurogenesis, morphogenesis and cytodifferentiation in the rat nucleus accumbens; in Chronister RB, De France JF (eds): The Neurobiology of the Nucleus Accumbens. Brunswick, Haer Institute, 1981, pp 173-197.
26.
Muhammad A, Carroll C, Kolb B: Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience 2012;216:103-109.
[PubMed]
27.
Monroy E, Hernández-Torres E, Flores G: Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat 2010;40:93-101.
[PubMed]
28.
McClure WO, Ishtoyan A, Lyon M: Very mild stress of pregnant rats reduces volume and cell number in nucleus accumbens of adult offspring: some parallels to schizophrenia. Dev Brain Res 2004;149:21-28.
[PubMed]
29.
Sturman DA, Moghaddam B: Striatum processes reward differently in adolescents versus adults. Proc Natl Acad Sci U S A 2012;109:1719-1724.
[PubMed]
30.
Galvan A, et al: Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 2006;26:6885-6892.
[PubMed]
31.
Jongen-Rêlo AL, Voorn P, Groenewegen HJ: Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci 1994;6:1255-1264.
[PubMed]
32.
Zahm DS: Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann N Y Acad Sci 1999;877:113-128.
[PubMed]
33.
Heimer L: Basal forebrain in the context of schizophrenia. Brain Res Rev 2000;31:205-235.
[PubMed]
34.
Neto LL, Oliveira E, Correia F, Ferreira AG: The human nucleus accumbens: where is it? A stereotactic, anatomical and magnetic resonance imaging study. Neuromodulation 2008;11:13-22.
[PubMed]
35.
Mavridis I, Boviatsis E, Anagnostopoulou S: Anatomy of the human nucleus accumbens: a combined morphometric study. Surg Radiol Anat 2011;33:405-414.
[PubMed]
36.
Záborszky L, et al: Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 1985;14:427-453.
[PubMed]
37.
Zahm DS, Brog JS: On the significance of subterritories in the ‘accumbens' part of the rat ventral striatum. Neuroscience 1992;50:751-767.
[PubMed]
38.
Wright CI, Groenewegen HJ: Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience 1996;73:359-373.
[PubMed]
39.
Prensa L, Richard S, Parent A: Chemical anatomy of the human ventral striatum and adjacent basal forebrain structures. J Comp Neurol 2003;460:345-367.
[PubMed]
40.
Ahsan RL, et al: Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. Neuroimage 2007;38:261-270.
[PubMed]
41.
Mavridis I, Boviatsis E, Anagnostopoulou S: Stereotactic anatomy of the human nucleus accumbens: from applied mathematics to microsurgical accuracy. Surg Radiol Anat 2011;33:583-594.
[PubMed]
42.
Brabec J, Krásený J, Petrovický P: Volumetry of striatum and pallidum in man - anatomy, cytoarchitecture, connections, MRI and aging. Sb Lek 2003;104:13-65.
[PubMed]
43.
Herkenham M, Edley SM, Stuart J: Cell clusters in the nucleus accumbens of the rat, and the mosaic relationship of opiate receptors, acetylcholinesterase and subcortical afferent terminations. Neuroscience 1984;11:561-593.
[PubMed]
44.
Zahm DS: An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000;24:85-105.
[PubMed]
45.
Caboche J, Vernier P, Rogard M, Besson MJ: Haloperidol increases PPE mRNA levels in the caudal part of the nucleus accumbens in the rat. Neuroreport 1993;4:551-554.
[PubMed]
46.
Mathieu AM, Caboche J, Besson MJ: Distribution of preproenkephalin, preprotachykinin A, and preprodynorphin mRNAs in the rat nucleus accumbens: effect of repeated administration of nicotine. Synapse 1996;23:94-106.
[PubMed]
47.
Rogard M, Caboche J, Julien JF, Besson MJ: The rat nucleus accumbens: two levels of complexity in the distribution of glutamic acid decarboxylase (67 kDa) and preproenkephalin messenger RNA. Neurosci Lett 1993;155:81-86.
[PubMed]
48.
Voorn P, Gerfen CR, Groenewegen HJ: Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. J Comp Neurol 1989;289:189-201.
[PubMed]
49.
Churchill L, Dilts RP, Kalivas PW: Changes in gamma-aminobutyric acid, mu-opioid and neurotensin receptors in the accumbens-pallidal projection after discrete quinolinic acid lesions in the nucleus accumbens. Brain Res 1990;511:41-54.
[PubMed]
50.
Zahm DS: The ventral striatopallidal parts of the basal ganglia in the rat - II. Compartmentation of ventral pallidal efferents. Neuroscience 1989;30:33-50.
[PubMed]
51.
Olson L, Seiger Å, Fuxe K: Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 1972;44:283-288.
[PubMed]
52.
Goldman PS, Nauta WJH: An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 1977;171:369-385.
[PubMed]
53.
Herkenham M, Pert CB: In vitro autoradiography of opiate receptors in rat brain suggests loci of ‘opiatergic' pathways. Proc Natl Acad Sci U S A 1980;77:5532-5536.
[PubMed]
54.
Gerfen CR: The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 1989;246:385-388.
[PubMed]
55.
Voorn P, Brady LS, Schotte A, Berendse HW, Richfield EK: Evidence for two neurochemical divisions in the human nucleus accumbens. Eur J Neurosci 1994;6:1913-1916.
[PubMed]
56.
Graybiel AM, Ragsdale CW Jr: Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 1978;75:5723-5726.
[PubMed]
57.
Gerfen CR: The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 1984;311:461-464.
[PubMed]
58.
Gerfen CR, Baimbridge KG, Miller JJ: The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci U S A 1985;82:8780-8784.
[PubMed]
59.
Graybiel AM: Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 1984;13:1157-1187.
[PubMed]
60.
Minamino N, Masuda H, Kangawa K, Matsuo H: Regional distribution of neuromedin K and neuromedin L in rat brain and spinal cord. Biochem Biophys Res Commun 1984;124:731-738.
[PubMed]
61.
Zahm DS, Heimer L: Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 1993;327:220-232.
[PubMed]
62.
Sazdanović M, et al: Neurons of human nucleus accumbens. Vojnosanit Pregl 2011;68:655-660.
[PubMed]
63.
Berendse HW, Groenewegen HJ: Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 1990;299:187-228.
[PubMed]
64.
Meredith GE, Blank B, Groenewegen HJ: The distribution and compartmental organization of the cholinergic neurons in nucleus accumbens of the rat. Neuroscience 1989;31:327-345.
[PubMed]
65.
Meredith GE, Agolia R, Arts MPM, Groenewegen HJ, Zahm DS: Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat. Neuroscience 1992;50:149-162.
[PubMed]
66.
Deutch AY, Cameron DS: Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 1992;46:49-56.
[PubMed]
67.
Patel S, Roberts J, Moorman J, Reavill C: Localization of serotonin-4 receptors in the striatonigral pathway in rat brain. Neuroscience 1995;69:1159-1167.
[PubMed]
68.
Zahm DS, Heimer L: Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 1990;302:437-446.
[PubMed]
69.
Churchill L, et al: Patterns of glucose use after bicuculline-induced convulsions in relationship to gamma-aminobutyric acid and mu-opioid receptors in the ventral pallidum - functional markers for the ventral pallidum. Brain Res 1992;581:39-45.
[PubMed]
70.
Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ: Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol 1998;391:115-132.
[PubMed]
71.
Le Moine C, Bloch B: Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 1996;73:131-143.
[PubMed]
72.
Deutch AY, Lee MC, Iadarola MJ: Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 1992;3:332-341.
[PubMed]
73.
Heimer L, et al: The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 1997;9:354-381.
[PubMed]
74.
Alheid GF, Heimer L: New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 1988;27:1-39.
[PubMed]
75.
Heimer L, Alheid GF: Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 1991;295:1-42.
[PubMed]
76.
Zahm DS: Is the caudomedial shell of the nucleus accumbens part of the extended amygdala? A consideration of connections. Crit Rev Neurobiol 1998;12:245-265.
[PubMed]
77.
Nicola SM: The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 2007;191:521-550.
[PubMed]
78.
Mogenson GJ, Jones DL, Yim CY: From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:69-97.
[PubMed]
79.
Fallon JH, Moore RY: Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978;180:545-580.
[PubMed]
80.
Phillipson OT, Griffiths AC: The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 1985;16:275-296.
[PubMed]
81.
Fuller TA, Russchen FT, Price JL: Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 1987;258:317-338.
[PubMed]
82.
Mcdonald AJ: Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 1991;44:1-14.
[PubMed]
83.
Groenewegen HJ, Becker NE, Lohman AH: Subcortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimid. Neuroscience 1980;5:1903-1916.
[PubMed]
84.
DeFrance JF, Marchand JF, Sikes RW, Chronister RB, Hubbard JI: Characterization of fimbria input to nucleus accumbens. J Neurophysiol 1985;54:1553-1567.
[PubMed]
85.
Yang CR, Mogenson GJ: Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res 1984;324;69-84.
[PubMed]
86.
Zaczek R, Hedreen JC, Coyle JT: Evidence for a hippocampal-septal glutamatergic pathway in the rat. Exp Neurol 1979;65:145-156.
[PubMed]
87.
Lopes da Silva FH, Arnolds DE, Neijt HC: A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway. Exp Brain Res 1984;55:205-214.
[PubMed]
88.
Kelley AE, Domesick VB: The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde-horseradish peroxidase study. Neuroscience 1982;7:2321-2335.
[PubMed]
89.
Brog JS, Salyapongse A, Deutch AY, Zahm DS: The patterns of afferent innervation of the core and shell in the ‘accumbens' part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 1993;338:255-278.
[PubMed]
90.
Beckstead RM: An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 1979;184:43-62.
[PubMed]
91.
Buchanan SL, Thompson RH, Maxwell BL, Powell DA: Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res 1994;100:469-483.
[PubMed]
92.
Chiba T, Kayahara T, Nakano K: Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 2001;888:83-101.
[PubMed]
93.
Ferry AT, Ongür D, An X, Price JL: Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000;425:447-470.
[PubMed]
94.
Gorelova N, Yang CR: The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 1997;76:689-706.
[PubMed]
95.
Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM: Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 1996;71:371-382.
[PubMed]
96.
Morino P, Mascagni F, McDonald A, Hökfelt T: Cholecystokinin corticostriatal pathway in the rat: evidence for bilateral origin from medial prefrontal cortical areas. Neuroscience 1994;59:939-952.
[PubMed]
97.
Groenewegen HJ, Room P, Witter MP, Lohman AH: Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 1982;7:977-996.
[PubMed]
98.
Sesack SR, Deutch AY, Roth RH, Bunney BS: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 1989;290:213-242.
[PubMed]
99.
Groenewegen HJ, Wright CI, Beijer AV, Voorn P: Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 1999;877:49-63.
[PubMed]
100.
Bossert JM, et al: Role of projections from ventral medial prefrontal cortex to nucleus accumbens shell in context-induced reinstatement of heroin seeking. J Neurosci 2012;32:4982-4991.
[PubMed]
101.
Bossert JM, et al: Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neurosci 2011;14:420-422.
[PubMed]
102.
Gerfen CR, Herkenham M, Thibault J: The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 1987;7:3915-3934.
[PubMed]
103.
Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM: The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 1996;16:436-447.
[PubMed]
104.
Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP: Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 1987;23:103-120.
[PubMed]
105.
Williams DJ, Crossman AR, Slater P: The efferent projections of the nucleus accumbens in the rat. Brain Res 1977;130:217-227.
[PubMed]
106.
Churchill L, Kalivas PW: A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J Comp Neurol 1994;345:579-595.
[PubMed]
107.
Yang CR, Mogenson GJ: Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 1989;489:237-246.
[PubMed]
108.
Záborszky L, Cullinan WE: Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 1992;570:92-101.
[PubMed]
109.
Mogenson GJ, Swanson LW, Wu M: Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J Neurosci 1983;3:189-202.
[PubMed]
110.
Russchen FT, Bakst I, Amaral DG, Price JL: The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 1985;329:241-257.
[PubMed]
111.
Ito N, Ishida H, Miyakawa F, Naito H: Microelectrode study of projections from the amygdaloid complex to the nucleus accumbens in the cat. Brain Res 1974;67:338-341.
[PubMed]
112.
Conrad LC, Pfaff DW: Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res 1976;113:589-596.
[PubMed]
113.
Groenewegen HJ, Russchen FT: Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 1984;223:347-367.
[PubMed]
114.
Powell EW, Leman RB: Connections of the nucleus accumbens. Brain Res 1976;105:389-403.
[PubMed]
115.
van Kuyck K, et al: Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl 2007;97:375-391.
[PubMed]
116.
Troiano R, Siegel A: Efferent connections of the basal forebrain in the cat: the nucleus accumbens. Exp Neurol 1978;61:185-197.
[PubMed]
117.
Goldman-Rakic PS: Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into island and matrix cellular compartments. J Comp Neurol 1982;205:398-413.
[PubMed]
118.
Donoghue JP, Herkenham M: Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 1986;365:397-403.
[PubMed]
119.
Alexander GE, Crutcher MD, DeLong MR: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal' and ‘limbic' functions. Prog Brain Res 1990;85:119-146.
[PubMed]
120.
Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357-381.
[PubMed]
121.
Zahm DS, Williams E, Wohltmann C: Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 1996;364:340-362.
[PubMed]
122.
Groenewegen HJ, Berendse HW, Haber SN: Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 1993;57:113-142.
[PubMed]
123.
O'Donnell P, Lavín A, Enquist LW, Grace AA, Card JP: Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 1997;17:2143-2167.
[PubMed]
124.
Haber SN, Fudge JL, McFarland NR: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000;20:2369-2382.
[PubMed]
125.
Alexander GE, Crutcher MD: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266-271.
[PubMed]
126.
Cummings JL: Frontal-subcortical circuits and human behavior. Arch Neurol 1993;50:873-880.
[PubMed]
127.
Kelley AE, Baldo BA, Pratt WE, Will MJ: Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 2005;86:773-795.
[PubMed]
128.
Swanson LW: Cerebral hemisphere regulation of motivated behavior. Brain Res 2000;886:113-164.
[PubMed]
129.
Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ: Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 2009;199:89-102.
[PubMed]
130.
Wise RA: Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 1982;5:39.
131.
Kelly PH, Seviour PW, Iversen SD: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 1975;94:507-522.
[PubMed]
132.
Roberts MD, et al: Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances. Physiol Behav 2012;105:661-668.
[PubMed]
133.
Swanson C, Heath S, Stratford T, Kelley A: Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacol Biochem Behav 1997;58:933-945.
[PubMed]
134.
Gong W, Neill DB, Lynn M, Justice JB Jr: Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 1999;93:1349-1358.
[PubMed]
135.
Dreher JK, Jackson DM: Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats. Brain Res 1989;487:267-277.
[PubMed]
136.
Everitt BJ, Morris KA, O'Brien A, Robbins TW: The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 1991;42:1-18.
[PubMed]
137.
Carr GD, White NM: Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 1983;33:2551-2557.
[PubMed]
138.
Wadenberg M-L, Ericson E, Magnusson O, Ahlenius S: Suppression of conditioned avoidance behavior by the local application of (−)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiatry 1990;28:297-307.
[PubMed]
139.
McCullough LD, Sokolowski JD, Salamone JD: A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 1993;52:919-925.
[PubMed]
140.
Basar K, et al: Nucleus accumbens and impulsivity. Prog Neurobiol 2010;92:533-557.
[PubMed]
141.
Kuhnen CM, Knutson B: The neural basis of financial risk taking. Neuron 2005;47:763-770.
[PubMed]
142.
Mogenson GJ, Wu M: Neuropharmacological and electrophysiological evidence implicating the mesolimbic dopamine system in feeding responses elicited by electrical stimulation of the medial forebrain bundle. Brain Res 1982;253:243-251.
[PubMed]
143.
Avena NM, Rada P, Moise N, Hoebel BG: Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 2006;139:813-820.
[PubMed]
144.
Avena NM, Rada P, Hoebel BG: Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 2008;156:865-871.
[PubMed]
145.
Mark GP, Rada P, Pothos E, Hoebel BG: Effects of feeding and drinking on acetylcholine release in the nucleus accumbens, striatum, and hippocampus of freely behaving rats. J Neurochem 1992;58:2269-2274.
[PubMed]
146.
Di Chiara G, Tanda G: Blunting of reactivity of dopamine transmission to palatable food: a biochemical marker of anhedonia in the CMS model? Psychopharmacology 1997;134:351-353.
[PubMed]
147.
Bassareo V, Di Chiara G: Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 1999;11:4389-4397.
[PubMed]
148.
Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD: Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 2012;63:415-422.
[PubMed]
149.
Everitt BJ: Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev 1990;14:217-232.
[PubMed]
150.
Platek SM, Singh D: Optimal waist-to-hip ratios in women activate neural reward centers in men. PLoS One 2010;5:e9042.
[PubMed]
151.
Rebec GV, Grabner CP, Johnson M, Pierce RC, Bardo MT: Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience 1997;76:707-714.
[PubMed]
152.
Mitchell JB, Gratton A: Involvement of mesolimbic dopamine neurons in sexual behaviors: implications for the neurobiology of motivation. Rev Neurosci 1994;5:317-329.
[PubMed]
153.
Robbins TW, Cador M, Taylor JR, Everitt BJ: Limbic-striatal interactions in reward-related processes. Neurosci Biobehav Rev 1989;13:155-162.
[PubMed]
154.
Di Chiara G: The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 1995;38:95-137.
[PubMed]
155.
Berns GS, McClure SM, Pagnoni G, Montague PR: Predictability modulates human brain response to reward. J Neurosci 2001;21:2793-2798.
[PubMed]
156.
Grubert C, et al: Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J Biol Psychiatry 2011;12:516-527.
[PubMed]
157.
Carelli RM: Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs ‘natural' reinforcement. Physiol Behav 2002;76:379-387.
[PubMed]
158.
Goto Y, Grace AA: Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nature Neurosci 2005;8:805-812.
[PubMed]
159.
Yun IA, Wakabayashi KT, Fields HL, Nicola SM: The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 2004;24:2923-2933.
[PubMed]
160.
Balleine B, Killcross S: Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action. Behav Brain Res 1994;65:181-193.
[PubMed]
161.
Cardinal RN, Parkinson JA, Hall J, Everitt BJ: Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 2002;26:321-352.
[PubMed]
162.
Berridge KC, Robinson TE: What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998;28:309-369.
[PubMed]
163.
Yin HH, Ostlund SB, Balleine BW: Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 2008;28:1437-1448.
[PubMed]
164.
Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008;59:1037-1050.
[PubMed]
165.
Salamone JD: The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 1994;61:117-133.
[PubMed]
166.
Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ: Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci 1999;19:2401-2411.
[PubMed]
167.
van der Plasse G, Schrama R, van Seters SP, Vanderschuren LJMJ, Westenberg HGM: Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One 2012;7:e33455.
[PubMed]
168.
Alderson HL, Parkinson JA, Robbins TW, Everitt BJ: The effects of excitotoxic lesions of the nucleus accumbens core or shell regions on intravenous heroin self-administration in rats. Psychopharmacology (Berl) 2001;153:455-463.
[PubMed]
169.
Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y: Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci 2007;27:12655-12663.
[PubMed]
170.
Bossert JM, Gray SM, Lu L, Shaham Y: Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 2006;31:2197-2209.
[PubMed]
171.
Maldonado-Irizarry CS, Kelley AE: Excitatory amino acid receptors within nucleus accumbens subregions differentially mediate spatial learning in the rat. Behav Pharmacol 1995;6:527-539.
[PubMed]
172.
Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ: Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 2000;114:42-63.
[PubMed]
173.
Ito R, Robbins TW, Everitt BJ: Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 2004;7:389-397.
[PubMed]
174.
Hernandez PJ, Sadeghian K, Kelley AE: Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 2002;5:1327-1331.
[PubMed]
175.
Corbit LH, Muir JL, Balleine BW: The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 2001;21:3251-3260.
[PubMed]
176.
Cardinal RN, Cheung TH: Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci 2005;6:9.
[PubMed]
177.
Basso AM, Kelley AE: Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci 1999;113:324-336.
[PubMed]
178.
Kelley AE, Swanson CJ: Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 1997;89:107-113.
[PubMed]
179.
Pijnenburg AJJ, van Rossum JM: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol 1973;25:1003-1005.
[PubMed]
180.
Costall B, Naylor RJ: The behavioural effects of dopamine applied intracerebrally to areas of the mesolimbic system. Eur J Pharmacol 1975;32:87-92.
[PubMed]
181.
Freedman SB, Wait CP, Woodruff GN: Effects of dopamine receptor agonists and antagonists in the rat nucleus accumbens (proceedings). Br J Pharmacol 1979;67:430P-431P.
[PubMed]
182.
Matsuda W, et al: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 2009;29:444-453.
[PubMed]
183.
Berlanga ML, et al: Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine. Neuroscience 2003;120:1149-1156.
[PubMed]
184.
Zahm DS: Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res 1991;552:164-169.
[PubMed]
185.
Jones SR, O'Dell SJ, Marshall JF, Wightman RM: Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain. Synapse 1996;23:224-231.
[PubMed]
186.
Kalivas PW, Duffy P: Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 1995;675:325-328.
[PubMed]
187.
King D, Zigmond MJ, Finlay JM: Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 1997;77:141-153.
[PubMed]
188.
Chiara G, Tanda G, Frau R, Carboni E: On the preferential release of dopamine in the nucleus accumbens by amphetamine: further evidence obtained by vertically implanted concentric dialysis probes. Psychopharmacology 1993;112:398-402.
[PubMed]
189.
Pontieri FE, Tanda G, Di Chiara G: Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell' as compared with the ‘core' of the rat nucleus accumbens. Proc Natl Acad Sci U S A 1995;92:12304-12308.
[PubMed]
190.
Marcus MM, Nomikos GG, Svensson TH: Differential actions of typical and atypical antipsychotic drugs on dopamine release in the core and shell of the nucleus accumbens. Eur Neuropsychopharmacol 1996;6:29-38.
[PubMed]
191.
Bardo MT, Hammer RP Jr: Autoradiographic localization of dopamine D1 and D2 receptors in rat nucleus accumbens: resistance to differential rearing conditions. Neuroscience 1991;45:281-290.
[PubMed]
192.
Jones DL, Mogenson GJ: Nucleus accumbens to globus pallidus GABA projection: electrophysiological and iontophoretic investigations. Brain Res 1980;188:93-105.
[PubMed]
193.
Givens B, Sarter M: Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 1997;84:1-22.
[PubMed]
194.
Sarter M, Bruno JP: Cortical acetylcholine, reality distortion, schizophrenia, and Lewy body dementia: too much or too little cortical acetylcholine? Brain Cogn 1998;38:297-316.
[PubMed]
195.
Wachtel H, Anden N-E: Motor activity of rats following intracerebral injections of drugs influencing GABA mechanisms. Naunyn Schmiedebergs Arch Pharmacol 1978;302:133-139.
[PubMed]
196.
Jones DL, Mogenson GJ, Wu M: Injections of dopaminergic, cholinergic, serotoninergic and gabaergic drugs into the nucleus accumbens: effects on locomotor activity in the rat. Neuropharmacology 1981;20:29-37.
[PubMed]
197.
Pycock C, Horton R: Evidence for an accumbens-pallidal pathway in the rat and its possible gabaminergic control. Brain Res 1976;110:629-634.
[PubMed]
198.
Shreve PE, Uretsky NJ: Effect of GABAergic transmission in the subpallidal region on the hypermotility response to the administration of excitatory amino acids and picrotoxin into the nucleus accumbens. Neuropharmacology 1988;27:1271-1277.
[PubMed]
199.
Hamilton MH, De Belleroche JS, Gardiner IM, Herberg LJ: Stimulatory effect of N-methyl aspartate on locomotor activity and transmitter release from rat nucleus accumbens. Pharmacol Biochem Behav 1986;25:943-948.
[PubMed]
200.
Mogenson GJ, Nielsen M: A study of the contribution of hippocampal-accumbens-subpallidal projections to locomotor activity. Behav Neural Biol 1984;42:38-51.
[PubMed]
201.
Schacter GB, Yang CR, Innis NK, Mogenson GJ: The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Res 1989;494:339-349.
[PubMed]
202.
Ericson E, Svensson TH, Ahlenius S: Loss of discriminative avoidance behavior by local application of kynurenic acid into the nucleus accumbens of the rat. Pharmacol Biochem Behav 1990;37:843-845.
[PubMed]
203.
Roberts PJ, Anderson SD: Stimulatory effect of L-glutamate and related amino acids on [3H]dopamine release from rat striatum: an in vitro model for glutamate actions. J Neurochem 1979;32:1539-1545.
[PubMed]
204.
Imperato A, Honoré T, Jensen LH: Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats. Brain Res 1990;530:223-228.
[PubMed]
205.
Boldry RC, Willins DL, Wallace LJ, Uretsky NJ: The role of endogenous dopamine in the hypermotility response to intra-accumbens AMPA. Brain Res 1991;559:100-108.
[PubMed]
206.
Pulvirenti L, Swerdlow NR, Koob GF: Microinjection of a glutamate antagonist into the nucleus accumbens reduces psychostimulant locomotion in rats. Neurosci Lett 1989;103:213-218.
[PubMed]
207.
Donzanti BA, Uretsky NJ: Effects of excitatory amino acids on locomotor activity after bilateral microinjection into the rat nucleus accumbens: possible dependence on dopaminergic mechanisms. Neuropharmacology 1983;22:971-981.
[PubMed]
208.
Boldry RC, Layer RT, Wallace LJ, Uretsky NJ: Stimulation of locomotor activity by intra-accumbens AMPA is not inhibited by neonatal 6-hydroxydopamine-induced lesions. Neurosci Lett 1992;138:265-269.
[PubMed]
209.
Cornish JL, Kalivas PW: Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 2000;20:RC89.
[PubMed]
210.
Kelley AE, Smith-Roe SL, Holahan MR: Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A 1997;94:12174-12179.
[PubMed]
211.
Grilli M, Summa M, Salamone A, et al: In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacology 2012;63:916-926.
[PubMed]
212.
Ciano PD, Everitt BJ: Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001;25:341-360.
[PubMed]
213.
Avena NM, Rada PV: Cholinergic modulation of food and drug satiety and withdrawal. Physiol Behav 2012;106:332-336.
[PubMed]
214.
See R, McLaughlin J, Fuchs R: Muscarinic receptor antagonism in the basolateral amygdala blocks acquisition of cocaine-stimulus association in a model of relapse to cocaine-seeking behavior in rats. Neuroscience 2003;117:477-483.
[PubMed]
215.
Yeomans J, Baptista M: Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 1997;57:915-921.
[PubMed]
216.
Blaha CD, et al: Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 1996;16:714-722.
[PubMed]
217.
Blaha CD, Winn P: Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. J Neurosci 1993;13:1035-1044.
[PubMed]
218.
Yeomans JS: Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 1995;12:3-16.
[PubMed]
219.
Phelps PE, Vaughn JE: Immunocytochemical localization of choline acetyltransferase in rat ventral striatum: a light and electron microscopic study. J Neurocytol 1986;15:595-617.
[PubMed]
220.
Suzuki T, Miura M, Nishimura K, Aosaki T: Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons. J Neurosci 2001;21:6492-6501.
[PubMed]
221.
Calabresi P, Centonze D, Gubellini P, Bernardi G: Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology 1999;38:323-326.
[PubMed]
222.
Aosaki T, et al: Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 1994;14:3969-3984.
[PubMed]
223.
Witten IB, et al: Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 2010;330:1677-1681.
[PubMed]
224.
Rada P, Avena NM, Hoebel BG: Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005;134:737-744.
[PubMed]
225.
Wise R, et al: Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 1995;120:10-20.
[PubMed]
226.
Pothos E, Rada P, Mark GP, Hoebel BG: Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res 1991;566:348-350.
[PubMed]
227.
Carelli RM, Deadwyler SA: Dual factors controlling activity of nucleus accumbens cell-firing during cocaine self-administration. Synapse 1996;24:308-311.
[PubMed]
228.
Chang JY, Sawyer SF, Lee RS, Woodward DJ: Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J Neurosci 1994;14:1224-1244.
[PubMed]
229.
Peoples LL, Uzwiak AJ, Gee F, West MO: Operant behavior during sessions of intravenous cocaine infusion is necessary and sufficient for phasic firing of single nucleus accumbens neurons. Brain Res 1997;757:280-284.
[PubMed]
230.
Hyman SE: Addiction to cocaine and amphetamine. Neuron 1996;16:901-904.
[PubMed]
231.
Pettit HO, Justice JB Jr: Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 1989;34:899-904.
[PubMed]
232.
Koob GF, Maldonado R, Stinus L: Neural substrates of opiate withdrawal. Trends Neurosci 1992;15:186-191.
[PubMed]
233.
Chiara GD, Alan North R: Neurobiology of opiate abuse. Trends Pharmacol Sci 1992;13:185-193.
[PubMed]
234.
Shippenberg TS, Herz A, Spanagel R, Bals-Kubik R, Stein C: Conditioning of opioid reinforcement: neuroanatomical and neurochemical substrates. Ann NY Acad Sci 1992;654:347-356.
[PubMed]
235.
Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL: Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci U S A 1993;90:7966-7969.
[PubMed]
236.
Dani JA, Heinemann S: Molecular and cellular aspects of nicotine abuse. Neuron 1996;16:905-908.
[PubMed]
237.
Corrigall W, Franklin K, Coen K, Clarke P: The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992;107:285-289.
[PubMed]
238.
Tanda G, Pontieri FE, Di Chiara G: Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 1997;276:2048-2050.
[PubMed]
239.
Carlezon WA Jr, Wise RA: Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacology (Berl) 1996;128:413-420.
[PubMed]
240.
Carlezon WA Jr, Wise RA: Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 1996;16:3112-3122.
[PubMed]
241.
Parkinson JA, et al: Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 2002;137:149-163.
[PubMed]
242.
Neill D: Problems of concept and vocabulary in the anhedonia hypothesis. Behav Brain Sci 1982;5:70.
243.
Melis M, Spiga S, Diana M: The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol 2005;63:101-154.
[PubMed]
244.
Wise RA: Action of drugs of abuse on brain reward systems. Pharmacol Biochem Behav 1980;13(suppl 1):213-223.
[PubMed]
245.
Di Chiara G: Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 1999;375:13-30.
[PubMed]
246.
Hyman SE, Malenka RC: Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2001;2:695-703.
[PubMed]
247.
Salamone JD, Cousins MS, Snyder BJ: Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 1997;21:341-359.
[PubMed]
248.
Kakade S, Dayan P: Dopamine: generalization and bonuses. Neural Netw 2002;15:549-559.
[PubMed]
249.
Van den Oever MC, Spijker S, Smit AB: The synaptic pathology of drug addiction. Adv Exp Med Biol 2012;970:469-491.
[PubMed]
250.
Di Chiara G, Imperato A: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 1988;85:5274-5278.
[PubMed]
251.
Saal D, Dong Y, Bonci A, Malenka RC: Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 2003;37:577-582.
[PubMed]
252.
Ungless MA, Whistler JL, Malenka RC, Bonci A: Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001;411:583-587.
[PubMed]
253.
Peoples LL, West MO: Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J Neurosci 1996;16:3459-3473.
[PubMed]
254.
Li Q, Wang Y, Zhang Y, et al: Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: an event-related fMRI study. Brain Res 2012;1469:63-72.
[PubMed]
255.
Kilts CD: The neural correlates of cue-induced craving in cocaine-dependent women. Am J Psychiatry 2004;161:233-241.
[PubMed]
256.
Kilts CD, Schweitzer JB, Quinn CK, et al: Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 2001;58:334-341.
[PubMed]
257.
De Ridder D, Vanneste S, Kovacs S, Sunaert S, Dom G: Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study. Neurosci Lett 2011;496:5-10.
[PubMed]
258.
David SP, et al: Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 2005;58:488-494.
[PubMed]
259.
Ko C-H, et al: Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res 2009;43:739-747.
[PubMed]
260.
Engelmann JM, et al: Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage 2012;60:252-262.
[PubMed]
261.
Volkow ND, et al: Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 2006;26:6583-6588.
[PubMed]
262.
Grant S, et al: Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 1996;93:12040-12045.
[PubMed]
263.
Childress AR, et al: Limbic activation during cue-induced cocaine craving. Am J Psychiatry 1999;156:11-18.
[PubMed]
264.
Pettit HO, Ettenberg A, Bloom FE, Koob GF: Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 1984;84:167-173.
[PubMed]
265.
Rassnick S, Stinus L, Koob GF: The effects of 6-hydroxydopamine lesions of the nucleus accumbens and the mesolimbic dopamine system on oral self-administration of ethanol in the rat. Brain Res 1993;623:16-24.
[PubMed]
266.
Puglisi-Allegra S, Ventura R: Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci 2012;6:31.
[PubMed]
267.
Katsidoni V, Apazoglou K, Panagis G: Role of serotonin 5-HT2A and 5-HT2C receptors on brain stimulation reward and the reward-facilitating effect of cocaine. Psychopharmacology (Berl) 2011;213:337-354.
[PubMed]
268.
Hoplight BJ, Vincow ES, Neumaier JF: Cocaine increases 5-HT1B mRNA in rat nucleus accumbens shell neurons. Neuropharmacology 2007;52:444-449.
[PubMed]
269.
Peng X-Q, et al: Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism. Drug Alcohol Depend 2008;97:216-225.
[PubMed]
270.
Pitchers KK, et al: Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens. PLoS One 2012;7:e34700.
[PubMed]
271.
Fischer-Smith KD, Houston ACW, Rebec GV: Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience 2012;210:333-339.
[PubMed]
272.
Wolf ME: The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 1998;54:679-720.
[PubMed]
273.
Stuber GD, Hopf FW, Hahn J, et al: Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcohol Clin Exp Res 2008;32:1714-1720.
[PubMed]
274.
Zweifel LS, Argilli E, Bonci A, Palmiter RD: Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 2008;59:486-496.
[PubMed]
275.
Wolf ME, Sun X, Mangiavacchi S, Chao SZ: Psychomotor stimulants and neuronal plasticity. Neuropharmacology 2004;47(suppl 1):61-79.
[PubMed]
276.
Kelley AE, Andrzejewski ME, Baldwin AE, Hernandez PJ, Pratt WE: Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann NY Acad Sci 2003;1003:159-168.
[PubMed]
277.
Guitart X, Thompson MA, Mirante CK, Greenberg ME, Nestler EJ: Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. J Neurochem 1992;58:1168-1171.
[PubMed]
278.
Tenayuca JM, Nazarian A: Hydrocodone and morphine possess similar rewarding effects and reduce ERK and CREB phosphorylation in the nucleus accumbens. Synapse 2012;66:918-922.
[PubMed]
279.
Larson EB, et al: Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 2011;31:16447-16457.
[PubMed]
280.
Mattson BJ, et al: Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. J Neurochem 2005;95:1481-1494.
[PubMed]
281.
Vialou V, et al: Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J Neurosci 2012;32:7577-7584.
[PubMed]
282.
Nye HE, Hope BT, Kelz MB, Iadarola M, Nestler EJ: Pharmacological studies of the regulation of chronic FOS-related antigen induction by cocaine in the striatum and nucleus accumbens. J Pharmacol Exp Ther 1995;275:1671-1680.
[PubMed]
283.
Hope BT, et al: Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 1994;13:1235-1244.
[PubMed]
284.
Moratalla R, Elibol B, Vallejo M, Graybiel AM: Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 1996;17:147-156.
[PubMed]
285.
Muller DL, Unterwald EM: D1 dopamine receptors modulate ΔFosB induction in rat striatum after intermittent morphine administration. J Pharmacol Exp Ther 2005;314:148-154.
[PubMed]
286.
Lee K-W, et al: Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci U S A 2006;103:3399-3404.
[PubMed]
287.
Muschamp JW, Nemeth CL, Robison AJ, Nestler EJ, Carlezon WA Jr: ΔFosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol Psychiatry 2012;71:44-50.
[PubMed]
288.
Kourrich S, Klug JR, Mayford M, Thomas MJ: AMPAR-independent effect of striatal αCaMKII promotes the sensitization of cocaine reward. J Neurosci 2012;32:6578-6586.
[PubMed]
289.
Wiltgen BJ, Law M, Ostlund S, Mayford M, Balleine BW: The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. Eur J Neurosci 2007;25:2491-2497.
[PubMed]
290.
Loweth JA, et al: Transient overexpression of alpha-Ca2+/calmodulin-dependent protein kinase II in the nucleus accumbens shell enhances behavioral responding to amphetamine. J Neurosci 2010;30:939-949.
[PubMed]
291.
Loweth JA, Baker LK, Guptaa T, Guillory AM, Vezina P: Inhibition of CaMKII in the nucleus accumbens shell decreases enhanced amphetamine intake in sensitized rats. Neurosci Lett 2008;444:157-160.
[PubMed]
292.
Anderson SM, et al: CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nature Neurosci 2008;11:344-353.
[PubMed]
293.
Nestler EJ: Molecular mechanisms of drug addiction. Neuropharmacology 2004;47(suppl 1):24-32.
[PubMed]
294.
Nestler EJ: Transcriptional mechanisms of addiction: role of ΔFosB. Phil Trans R Soc B 2008;363:3245-3255.
[PubMed]
295.
Heller AS, et al: Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci U S A 2009;106:22445-22450.
[PubMed]
296.
Baumann B, et al: Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a postmortem study. J Neuropsychiatry Clin Neurosci 1999;11:71-78.
[PubMed]
297.
Nestler EJ, Carlezon WA Jr: The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006;59:1151-1159.
[PubMed]
298.
Carlezon WA, et al: Regulation of cocaine reward by CREB. Science 1998;282:2272-2275.
[PubMed]
299.
Pliakas AM, et al: Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 2001;21:7397-7403.
[PubMed]
300.
Barrot M, et al: CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A 2002;99:11435-11440.
[PubMed]
301.
Svenningsson P, et al: Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006;311:77-80.
[PubMed]
302.
Alexander B, Warner-Schmidt J, Eriksson TM, et al: Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2010;2:54ra76.
[PubMed]
303.
Bewernick BH, et al: Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010;67:110-116.
[PubMed]
304.
Schlaepfer TE, et al: Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008;33:368-377.
[PubMed]
305.
Malone DA Jr, et al: Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 2009;65:267-275.
[PubMed]
306.
Abelson JL, et al: Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 2005;57:510-516.
[PubMed]
307.
Aouizerate B, et al: Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg 2004;101:682-686.
[PubMed]
308.
He F, et al: Evaluation of short-term psychological functions in opiate addicts after ablating the nucleus accumbens via stereotactic surgery. Stereotact Funct Neurosurg 2008;86:320-329.
[PubMed]
309.
Gao G, et al: Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereotact Funct Neurosurg 2003;81:96-104.
[PubMed]
310.
Huff W, et al: Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg 2010;112:137-143.
[PubMed]
311.
Kuhn J, et al: Deep brain stimulation of the nucleus accumbens and the internal capsule in therapeutically refractory Tourette-syndrome. J Neurol 2007;254:963-965.
[PubMed]
312.
Kuhn J, et al: Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry 2007;78:1152-1153.
[PubMed]
313.
Mantione M, van de Brink W, Schuurman PR, Denys D: Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 2010;66:E218; discussion E218.
[PubMed]
314.
Rauch SL, et al: A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 2006;104:558-565.
[PubMed]
315.
Mavridis I, Anagnostopoulou S: The human nucleus accumbens as a target for deep brain stimulation: anatomic study of electrode's target point and stereotactic coordinates. Minim Invasive Neurosurg 2009;52:212-215.
[PubMed]
316.
Denys D, et al: Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2010;67:1061-1068.
[PubMed]
317.
Voges J, Müller U, Bogerts B, Münte T, Heinze HJ: Deep brain stimulation surgery for alcohol addiction. World Neurosurg 2013;80:e21-e31.
[PubMed]
318.
Zhao H, et al: Associations between personality changes and nucleus accumbens ablation in opioid addicts. Acta Pharmacol Sin 2012;33:588-593.
[PubMed]
319.
Wu H-M, et al: Preliminary findings in ablating the nucleus accumbens using stereotactic surgery for alleviating psychological dependence on alcohol. Neurosci Lett 2010;473:77-81.
[PubMed]
320.
Kumar R, et al: Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 1998;51:850-855.
[PubMed]
321.
Limousin P, et al: Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995;345:91-95.
[PubMed]
322.
Tass PA, et al: Obsessive-compulsive disorder: development of demand-controlled deep brain stimulation with methods from stochastic phase resetting. Neuropsychopharmacology 2003;28(suppl 1):S27-S34.
[PubMed]
323.
Zabek M, Sobstyl M, Koziara H, Dzierzecki S: Deep brain stimulation of the right nucleus accumbens in a patient with Tourette syndrome. Case report. Neurol Neurochir Pol 2008;42:554-559.
[PubMed]
324.
Ackermans L, Temel Y, Visser-Vandewalle V: Deep brain stimulation in Tourette's syndrome. Neurotherapeutics 2008;5:339-344.
[PubMed]
325.
Neuner I, et al: From psychosurgery to neuromodulation: deep brain stimulation for intractable Tourette syndrome. World J Biol Psychiatry 2009;10:366-376.
[PubMed]
326.
Heinze H-J, et al: Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects. Front Hum Neurosci 2009;3:22.
[PubMed]
327.
Kuhn J, et al: Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 2011;16:620-623.
[PubMed]
328.
Müller UJ, et al: Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 2009;42:288-291.
[PubMed]
329.
Heldmann M, et al: Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing. PLoS One 2012;7:e36572.
[PubMed]
330.
Zhou H, Xu J, Jiang J: Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 2011;69:e41-e42.
[PubMed]
331.
Mallory GW, et al: The nucleus accumbens as a potential target for central poststroke pain. Mayo Clin Proc 2012;87:1025-1031.
[PubMed]
332.
Machado A: Safety study of deep brain stimulation to manage thalamic pain syndrome (DBS). http://clinicaltrials.gov/ct2/show/NCT01072656.
333.
Knight EJ, et al: Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal fMRI study. PLoS One 2013;8:e56640.
[PubMed]
You do not currently have access to this content.