Background: Gamma knife surgery (GKS) is used at subnecrotic doses for temporal lobe epilepsy (TLE) treatment. Rat models of TLE have been used to probe the mechanisms underlying GKS. Previous GKS studies on rats have used the Leksell GammaPlan® (LGP) treatment planning system to determine the irradiation time to achieve the dose to deliver. Since LGP is not designed for such small structures, it is important to calibrate the system for the rat brain. Methods: We have used a Monte Carlo simulation (MCS) radiation transport scheme, with CT data as anatomical and tissue-specific information, to simulate the dose distribution in a rat brain when using a Leksell Gamma Knife®. Results: We show how dose distributions obtained by MCS quantitatively compare to those predicted by LGP, and discuss whether LGP should be used for studies involving rats. The energy deposited when using the 4-mm collimators was calculated for targets on both sides of the rat brain in the dorsal hippocampus, which allowed us to determine the exact time to irradiate rats with a given dose. Conclusion: The MCS method used in this study can easily be used for future GKS studies on small animals when accurate dose distributions are required.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.