Article PDF first page preview

Article PDF first page preview

Introduction: Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. Methods: We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. Results: The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. Conclusion: Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.

1.
Fang
L
,
Gao
P
,
Bao
H
,
Tang
X
,
Wang
B
,
Feng
Y
, et al
.
Chronic obstructive pulmonary disease in China: a nationwide prevalence study
.
Lancet Respir Med
.
2018
;
6
(
6
):
421
30
.
2.
Ko
FW
,
Chan
KP
,
Hui
DS
,
Goddard
JR
,
Shaw
JG
,
Reid
DW
, et al
.
Acute exacerbation of COPD
.
Respirology
.
2016
;
21
(
7
):
1152
65
.
3.
Su
L
,
Qiao
Y
,
Luo
J
,
Huang
R
,
Li
Z
,
Zhang
H
, et al
.
Characteristics of the sputum microbiome in COPD exacerbations and correlations between clinical indices
.
J Transl Med
.
2022
;
20
(
1
):
76
.
4.
Haldar
K
,
George
L
,
Wang
Z
,
Mistry
V
,
Ramsheh
MY
,
Free
RC
, et al
.
The sputum microbiome is distinct between COPD and health, independent of smoking history
.
Respir Res
.
2020
;
21
(
1
):
183
.
5.
Wang
L
,
Hao
K
,
Yang
T
,
Wang
C
.
Role of the lung microbiome in the pathogenesis of chronic obstructive pulmonary disease
.
Chin Med J
.
2017
;
130
(
17
):
2107
11
.
6.
Dima
E
,
Kyriakoudi
A
,
Kaponi
M
,
Vasileiadis
I
,
Stamou
P
,
Koutsoukou
A
, et al
.
The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): current perspectives
.
Respir Med
.
2019
;
157
:
1
6
.
7.
Shi
CY
,
Yu
CH
,
Yu
WY
,
Ying
HZ
.
Gut-lung microbiota in chronic pulmonary diseases: evolution, pathogenesis, and therapeutics
.
The Can J Infect Dis Med Microbiol
.
2021
;
2021
:
9278441
.
8.
Pragman
AA
,
Kim
HB
,
Reilly
CS
,
Wendt
C
,
Isaacson
RE
.
The lung microbiome in moderate and severe chronic obstructive pulmonary disease
.
PLoS One
.
2012
;
7
(
10
):
e47305
.
9.
Dicker
AJ
,
Huang
JTJ
,
Lonergan
M
,
Keir
HR
,
Fong
CJ
,
Tan
B
, et al
.
The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease
.
J Allergy Clin Immunol
.
2021
;
147
(
1
):
158
67
.
10.
Galiana
A
,
Aguirre
E
,
Rodriguez
JC
,
Mira
A
,
Santibañez
M
,
Candela
I
, et al
.
Sputum microbiota in moderate versus severe patients with COPD
.
Eur Respir J
.
2014
;
43
(
6
):
1787
90
.
11.
Ekbom
A
,
Brandt
L
,
Granath
F
,
Löfdahl
CG
,
Egesten
A
.
Increased risk of both ulcerative colitis and Crohn’s disease in a population suffering from COPD
.
Lung
.
2008
;
186
(
3
):
167
72
.
12.
Russell
SL
,
Gold
MJ
,
Hartmann
M
,
Willing
BP
,
Thorson
L
,
Wlodarska
M
, et al
.
Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma
.
EMBO Rep
.
2012
;
13
(
5
):
440
7
.
13.
Tomoda
K
,
Kubo
K
,
Asahara
T
,
Andoh
A
,
Nomoto
K
,
Nishii
Y
, et al
.
Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats
.
J Toxicol Sci
.
2011
;
36
(
3
):
261
6
.
14.
Agarwal
AR
,
Zhao
L
,
Sancheti
H
,
Sundar
IK
,
Rahman
I
,
Cadenas
E
.
Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs
.
Am J Physiol Lung Cell Mol Physiol
.
2012
;
303
(
10
):
L889
98
.
15.
He
ZY
,
Ou
LM
,
Zhang
JQ
,
Bai
J
,
Liu
GN
,
Li
MH
, et al
.
Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease
.
Respiration
.
2010
;
80
(
6
):
445
52
.
16.
DiNicolantonio
JJ
.
Azithromycin for prevention of exacerbations of COPD
.
N Engl J Med
.
2011
;
365
(
23
):
2235
6
; author reply 6.
17.
Li
M
,
Zhong
X
,
He
Z
,
Wen
M
,
Li
J
,
Peng
X
, et al
.
Effect of erythromycin on cigarette-induced histone deacetylase protein expression and nuclear factor-κB activity in human macrophages in vitro
.
Int Immunopharmacol
.
2012
;
12
(
4
):
643
50
.
18.
Barnes
PJ
.
Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease
.
J Allergy Clin Immunol
.
2013
;
131
(
3
):
636
45
.
19.
Doan
T
,
Arzika
AM
,
Ray
KJ
,
Cotter
SY
,
Kim
J
,
Maliki
R
, et al
.
Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial
.
Clin Infect Dis
.
2017
;
64
(
9
):
1147
53
.
20.
Parnham
MJ
,
Erakovic Haber
V
,
Giamarellos-Bourboulis
EJ
,
Perletti
G
,
Verleden
GM
,
Vos
R
.
Azithromycin: mechanisms of action and their relevance for clinical applications
.
Pharmacol Ther
.
2014
;
143
(
2
):
225
45
.
21.
Segal
LN
,
Clemente
JC
,
Wu
BG
,
Wikoff
WR
,
Gao
Z
,
Li
Y
, et al
.
Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung
.
Thorax
.
2017
;
72
(
1
):
13
22
.
22.
Zhang
H
,
Qiu
SL
,
Tang
QY
,
Zhou
X
,
Zhang
JQ
,
He
ZY
, et al
.
Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation
.
Cell Death Dis
.
2019
;
10
(
9
):
678
.
23.
Singh
D
,
Agusti
A
,
Anzueto
A
,
Barnes
PJ
,
Bourbeau
J
,
Celli
BR
, et al
.
Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019
.
Eur Respir J
.
2019
;
53
(
5
):
1900164
.
24.
Leitao Filho
FS
,
Takiguchi
H
,
Akata
K
,
Ra
SW
,
Moon
JY
,
Kim
HK
, et al
.
Effects of inhaled corticosteroid/long-acting β(2)-agonist combination on the airway microbiome of patients with chronic obstructive pulmonary disease: a randomized controlled clinical trial (DISARM)
.
Am J Respir Crit Care Med
.
2021
;
204
(
10
):
1143
52
.
25.
Rogers
GB
,
Bruce
KD
,
Martin
ML
,
Burr
LD
,
Serisier
DJ
.
The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial
.
Lancet Respir Med
.
2014
;
2
(
12
):
988
96
.
26.
Bowerman
KL
,
Rehman
SF
,
Vaughan
A
,
Lachner
N
,
Budden
KF
,
Kim
RY
, et al
.
Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease
.
Nat Commun
.
2020
;
11
(
1
):
5886
.
27.
Lee
JJ
,
Kim
SH
,
Lee
MJ
,
Kim
BK
,
Song
WJ
,
Park
HW
, et al
.
Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals
.
Allergy
.
2019
;
74
(
4
):
709
19
.
28.
Macowan
MG
,
Liu
H
,
Keller
MD
,
Ween
M
,
Hamon
R
,
Tran
HB
, et al
.
Interventional low-dose azithromycin attenuates cigarette smoke-induced emphysema and lung inflammation in mice
.
Physiol Rep
.
2020
;
8
(
13
):
e14419
.
29.
Uzun
S
,
Djamin
RS
,
Kluytmans
JA
,
Mulder
PG
,
van't Veer
NE
,
Ermens
AA
, et al
.
Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial
.
Lancet Respir Med
.
2014
;
2
(
5
):
361
8
.
30.
Thorsen
J
,
Stokholm
J
,
Rasmussen
MA
,
Mortensen
MS
,
Brejnrod
AD
,
Hjelmsø
M
, et al
.
The airway microbiota modulates effect of azithromycin treatment for episodes of recurrent asthma-like symptoms in preschool children: a randomized clinical trial
.
Am J Respir Crit Care Med
.
2021
;
204
(
2
):
149
58
.
31.
Yao
GY
,
Ma
YL
,
Zhang
MQ
,
Gao
ZC
.
Macrolide therapy decreases chronic obstructive pulmonary disease exacerbation: a meta-analysis
.
Respiration
.
2013
;
86
(
3
):
254
60
.
32.
Ni
W
,
Shao
X
,
Cai
X
,
Wei
C
,
Cui
J
,
Wang
R
, et al
.
Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis
.
PLoS One
.
2015
;
10
(
3
):
e0121257
.
33.
McDonnell
L
,
Gilkes
A
,
Ashworth
M
,
Rowland
V
,
Harries
TH
,
Armstrong
D
, et al
.
Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis
.
Gut microbes
.
2021
;
13
(
1
):
1
18
.
34.
Li
J
,
Hu
Y
,
Liu
L
,
Wang
Q
,
Zeng
J
,
Chen
C
.
PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice
.
Sci Total Environ
.
2020
;
721
:
137432
.
35.
Wang
SN
,
Liu
Z
,
Tang
HZ
,
Meng
J
,
Xu
P
.
Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16
.
Microbiology Reading
.
2007
;
153
(
Pt 5
):
1556
65
.
36.
Sohn
KM
,
Baek
JY
.
Delftia lacustris septicemia in a pheochromocytoma patient: case report and literature review
.
Infect Dis
.
2015
;
47
(
5
):
349
53
.
37.
Li
N
,
He
F
,
Liao
B
,
Zhou
Y
,
Li
B
,
Ran
P
.
Exposure to ambient particulate matter alters the microbial composition and induces immune changes in rat lung
.
Respir Res
.
2017
;
18
(
1
):
143
.
38.
Qu
Z
,
Zhang
L
,
Hou
R
,
Ma
X
,
Yu
J
,
Zhang
W
, et al
.
Exposure to a mixture of cigarette smoke carcinogens disturbs gut microbiota and influences metabolic homeostasis in A/J mice
.
Chem Biol Interact
.
2021
;
344
:
109496
.
39.
Barcik
W
,
Boutin
RCT
,
Sokolowska
M
,
Finlay
BB
.
The role of lung and gut microbiota in the pathology of asthma
.
Immunity
.
2020
;
52
(
2
):
241
55
.
40.
Sze
MA
,
Chen
YW
,
Tam
S
,
Tashkin
D
,
Wise
RA
,
Connett
JE
, et al
.
The relationship between Helicobacter pylori seropositivity and COPD
.
Thorax
.
2015
;
70
(
10
):
923
9
.
41.
Guo
Y
,
Zhang
Y
,
Gerhard
M
,
Gao
JJ
,
Mejias-Luque
R
,
Zhang
L
, et al
.
Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer
.
Gut
.
2020
;
69
(
9
):
1598
607
.
42.
Ra
SW
,
Sze
MA
,
Lee
EC
,
Tam
S
,
Oh
Y
,
Fishbane
N
, et al
.
Azithromycin and risk of COPD exacerbations in patients with and without Helicobacter pylori
.
Respir Res
.
2017
;
18
(
1
):
109
.
43.
Nguyen
TL
,
Vieira-Silva
S
,
Liston
A
,
Raes
J
.
How informative is the mouse for human gut microbiota research
.
Dis Model Mech
.
2015
;
8
(
1
):
1
16
.
44.
Pragman
AA
,
Knutson
KA
,
Gould
TJ
,
Isaacson
RE
,
Reilly
CS
,
Wendt
CH
.
Chronic obstructive pulmonary disease upper airway microbiota alpha diversity is associated with exacerbation phenotype: a case-control observational study
.
Respir Res
.
2019
;
20
(
1
):
114
.
45.
Cogen
JD
,
Onchiri
F
,
Emerson
J
,
Gibson
RL
,
Hoffman
LR
,
Nichols
DP
, et al
.
Chronic azithromycin use in cystic fibrosis and risk of treatment-emergent respiratory pathogens
.
Ann Am Thorac Soc
.
2018
;
15
(
6
):
702
9
.
46.
Erb-Downward
JR
,
Thompson
DL
,
Han
MK
,
Freeman
CM
,
McCloskey
L
,
Schmidt
LA
, et al
.
Analysis of the lung microbiome in the “healthy” smoker and in COPD
.
PLoS One
.
2011
;
6
(
2
):
e16384
.
47.
Lee
SW
,
Kuan
CS
,
Wu
LS
,
Weng
JT
.
Metagenome and metatranscriptome profiling of moderate and severe COPD sputum in Taiwanese han males
.
PLoS One
.
2016
;
11
(
7
):
e0159066
.
48.
Pan
Y
,
Teng
D
,
Burke
AC
,
Haase
EM
,
Scannapieco
FA
.
Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa
.
Microb Pathog
.
2009
;
46
(
2
):
73
9
.
49.
Hilty
M
,
Burke
C
,
Pedro
H
,
Cardenas
P
,
Bush
A
,
Bossley
C
, et al
.
Disordered microbial communities in asthmatic airways
.
PLoS One
.
2010
;
5
(
1
):
e8578
.
50.
Leitao Filho
FS
,
Alotaibi
NM
,
Ngan
D
,
Tam
S
,
Yang
J
,
Hollander
Z
, et al
.
Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations
.
Am J Respir Crit Care Med
.
2019
;
199
(
10
):
1205
13
.
51.
Liu
X
,
Mao
B
,
Gu
J
,
Wu
J
,
Cui
S
,
Wang
G
, et al
.
Blautia-a new functional genus with potential probiotic properties
.
Gut Microbes
.
2021
;
13
(
1
):
1
21
.
52.
Vacca
M
,
Celano
G
,
Calabrese
FM
,
Portincasa
P
,
Gobbetti
M
,
De Angelis
M
.
The controversial role of human gut Lachnospiraceae
.
Microorganisms
.
2020
;
8
(
4
):
573
.
53.
Berger
K
,
Burleigh
S
,
Lindahl
M
,
Bhattacharya
A
,
Patil
P
,
Stålbrand
H
, et al
.
Xylooligosaccharides increase bifidobacteria and Lachnospiraceae in mice on a high-fat diet, with a concomitant increase in short-chain fatty acids, especially butyric acid
.
J Agric Food Chem
.
2021
;
69
(
12
):
3617
25
.
You do not currently have access to this content.