Background: Acute lung inflammation can be monitored by various biochemical readouts of bronchoalveolar lavage fluid (BALF). Objective: To analyze the BALF content of ultrafine particles (UFP; <100 nm) as an inflammatory biomarker in early diagnosis of acute and chronic lung diseases. Methods: Mice were exposed to different stress conditions and inflammatory insults (acute lipopolysaccharide inhalation, tobacco smoke and lethal dose of total body irradiation, i.e. 950 rad). After centrifugation, the cellular pellet was assessed while cytokines and ultrafine particles were measured in the soluble fraction of the BALF. Results: A characteristic UFP distribution with a D50 (i.e. the dimension of the 50th UFP percentile) was shared by all tested mouse strains in the BALF of resting lungs. All tested inflammatory insults similarly shifted this size distribution, resulting in a unique UFP fingerprint with an averaged D50 of 58.6 nm, compared with the mean UFP D50 of 23.7 nm for resting BALF (p < 0.0001). This UFP profile was highly reproducible and independent of the intensity or duration of the inflammatory trigger. It returned to baseline after resolution of the inflammation. Neither total body irradiation nor induction of acute cough induced this fingerprint. Conclusions: The UFP fingerprint in the BALF of resting and inflamed lungs can serve as a binary biomarker of healthy and acutely inflamed lungs. This marker can be used as a novel readout for the onset of inflammatory lung diseases and for complete lung recovery from different insults.

1.
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095-2128.
2.
Anderson JO, Thundiyil JG, Stolbach A: Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 2012;8:166-175.
3.
Pope CA 3rd, Dockery DW: Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006;56:709-742.
4.
Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A: Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 2010;14:809-821.
5.
Heinrich J, Thiering E, Rzehak P, Kramer U, Hochadel M, Rauchfuss KM, Gehring U, Wichmann HE: Long-term exposure to NO2 and PM10 and all-cause and cause-specific mortality in a prospective cohort of women. Occup Environ Med 2013;70:179-186.
6.
Gehring U, Heinrich J, Kramer U, Grote V, Hochadel M, Sugiri D, Kraft M, Rauchfuss K, Eberwein HG, Wichmann HE: Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 2006;17:545-551.
7.
Card JW, Zeldin DC, Bonner JC, Nestmann ER: Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 2008;295:L400-L411.
8.
Geiser M, Kreyling WG: Deposition and biokinetics of inhaled nanoparticles. Particle Fibre Toxicol 2010;7:2.
9.
Reutershan J, Basit A, Galkina EV, Ley K: Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2005;289:L807-L815.
10.
Nakav S, Cohen S, Feigelson SW, Bialik S, Shoseyov D, Kimchi A, Alon R: Tumor suppressor death-associated protein kinase attenuates inflammatory responses in the lung. Am J Respir Cell Mol Biol 2012;46:313-322.
11.
Gercel-Taylor C, Atay S, Tullis RH, Kesimer M, Taylor DD: Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem 2012;428:44-53.
12.
Soo CY, Song Y, Zheng Y, Campbell EC, Riches AC, Gunn-Moore F, Powis SJ: Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology 2012;136:192-197.
13.
Bracke KR, D'Hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S, Joos GF, Brusselle GG: Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J Immunol 2006;177:4350-4359.
14.
Mathew B, Huang Y, Jacobson JR, Berdyshev E, Gerhold LM, Wang T, Moreno-Vinasco L, Lang G, Zhao Y, Chen CT, LaRiviere PJ, Mauceri H, Sammani S, Husain AN, Dudek SM, Natarajan V, Lussier YA, Weichselbaum RR, Garcia JG: Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression. Am J Respir Cell Mol Biol 2011;44:415-422.
15.
Movsas B, Raffin TA, Epstein AH, Link CJ Jr: Pulmonary radiation injury. Chest 1997;111:1061-1076.
16.
Chen L, Lai K, Lomask JM, Jiang B, Zhong N: Detection of mouse cough based on sound monitoring and respiratory airflow waveforms. PloS One 2013;8:e59263.
17.
Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdorster G, Kreyling WG: Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 2007;115:728-733.
18.
Londahl J, Swietlicki E, Rissler J, Bengtsson A, Boman C, Blomberg A, Sandstrom T: Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease. Particle Fibre Toxicol 2012;9:30.
19.
Fazlollahi F, Kim YH, Sipos A, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED: Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. Nanomedicine 2013;9:786-794.
20.
Yacobi NR, Demaio L, Xie J, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED: Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 2008;4:139-145.
21.
Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI: Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667-2688.
22.
Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, Mi Z, Watkins SC, Gambotto A, Robbins PD: Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005;174:6440-6448.
23.
Viaud S, Terme M, Flament C, Taieb J, Andre F, Novault S, Escudier B, Robert C, Caillat-Zucman S, Tursz T, Zitvogel L, Chaput N: Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009;4:e4942.
24.
Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein HSC73. J Cell Biol 1999;147:599-610.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.