This review summarizes the present concepts regarding the biological processes that mediate intrinsic and innate host defense against microbial invasion of the lung. Innate immunity is the first line of defense of the higher organisms towards invading pathogens. It accomplishes a wide variety of activities including recognition and effector functions. The innate responses use phagocytic cells (macrophages, monocytes, and neutrophils), cells that release inflammatory mediators (basophils, mast cells, and eosinophils), and natural killer cells. The molecular component of innate responses includes complement, acute-phase proteins, and cytokines. Recognition of pathogen-associated molecular patterns is mediated by the pathogen receptors of the innate immune system, among these molecules toll-like receptors have emerged as fundamental components in the innate immune responses to infection, and a link between innate and adaptive immunity. Additional protection comes from polypeptide mediators of the innate host defense, such as the defensins and other antibiotic peptides. In view of the considerable burden in terms of mortality and morbidity that severe infections still pose worldwide, a better understanding of the biological basis of host-pathogen interactions opens stimulating future treatment perspectives.

1.
Medzhitov R, Janeway CA: Innate immunity: Impact on the adaptive immune response. Curr Opin Immunol 1997;9:4–9.
2.
Delves PJ, Roitt IM: The immune system. N Engl J Med 2000;343:37–49.
3.
Medzhitov R, Janeway CA: Innate immunity. N Engl J Med 2000;343:338–344.
4.
Turner MW, Hamvas RMJ: Mannose-binding lectin: Structure, function, genetics and disease associations. Rev Immunogenet 2002;2:305–322.
5.
Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T: Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 2000;165:2637–2642.
6.
Madsen HO, Garred P, Kurtzhals JAL, Lamm LU, Ryder LP, Thiel S, Svejgaard A: A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 1994;40:37–44.
7.
Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, Svejgaard A: Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein J Immunol 1995;155:3013–3020.
8.
Koch A, Melbye M, Sorensen P, Homoe P, Madsen HO, Molbak K, Hansen CH, Andersen LH, Hahn GW, Garred P: Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA 2001;285:1316–1321.
9.
Davies JC, Turner MW, Klein N: Impaired pulmonary status in cystic fibrosis adults with two mutated MBL-2 alleles. Eur Respir J 2004;24:798–804.
10.
Roy S, Knox K, Segal S, Griffiths D, Moore CE, Welsh KI, Smarason A, Day NP, McPheat WL, Crook DW, Hill AV: MBL genotype and risk of invasive pneumococcal disease: A case-control study. Lancet 2002;359:1569–1573.
11.
Hoal-Van Helden EG, Epstein J, Victor TC, Hon D, Lewis LA, Beyers N, Zurakowski D, Ezekowitz AB, Van Helden PD: Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr Res 1999;45:459–464.
12.
Garred P, Pressler T, Lanng S, Madsen HO, Moser C, Laursen I, Balstrup F, Koch C, Koch C: Mannose-binding lectin (MBL) therapy in an MBL-deficient patient with severe cystic fibrosis lung disease. Pediatr Pulmonol 2002;33:201–207.
13.
Fraser IP, Koziel H, Ezekowitz A: The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 1998;10:363–372.
14.
Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J: Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000;191:147–156.
15.
Savill J: Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 1997;53:491–508.
16.
Anderson KV, Jurgens G, Nusslein-Volhard C: Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell 1985;42:779–789.
17.
Lemaitre BE, Nicolas E, Michaut NL, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–983.
18.
O’Neill LA, Greene C: Signal transduction pathways activated by the IL-1 receptor family: Ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 1998;63:650–657.
19.
Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT: Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999;274:33419–33425.
20.
Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Liu YJ: Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 2001;194:863–869.
21.
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001;413:732–738.
22.
Beutler B: Tlr4: Central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000;12:20–26.
23.
Ohashi K, Burkart V, Flohe S, Kolb H: Heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 2000;164:558–561.
24.
Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000;1:398–401.
25.
Fenton MJ, Golenbock DT: LPS-binding proteins and receptors. J Leukoc Biol 1998;64:25–32.
26.
Kitchens RL, Thompson PA, Viriyakosol S, O’Keefe GE, Munford RS: Plasma CD14 decreases monocyte response to LPS by transferring cell-bound LPS to plasma lipoproteins. J Clin Invest 2001;108:485–493.
27.
Miyake K: Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004;12:186–192.
28.
Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K: Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002;3:667–672.
29.
Ohnishi T, Muroi M, Tanamoto K: MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface. Clin Diagn Lab Immunol 2003;10:405–410.
30.
Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K: Human MD-2 confers on mouse toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 2001;13:1595–1599.
31.
Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN: MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 2001;276:38044–38051.
32.
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;420:1099–1103.
33.
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S: A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–744.
34.
Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001;13:933–940.
35.
Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S: Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002;420:324–329.
36.
Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z: MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997;7:837–847.
37.
Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC: Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature 2002;416:750–756.
38.
Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Medzhitov R, Flavell RA: IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002;110:191–202.
39.
O’Neill LA: Signal transduction pathways activated by the IL-1 receptor/Toll-like receptor superfamily. Curr Top Microbiol Immunol 2002;270:17–61.
40.
Zhang G, Ghosh S: Toll-like receptor-mediated NF-κB activation: A phylogenetically conserved paradigm in innate immunity. J Clin Invest 2001;107:13–19.
41.
Diamond G, Kaiser V, Rhodes J, Russell JP, Bevins CL: Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells. Infect Immun 2000;68:113–119.
42.
Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621–663.
43.
Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S: ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 1999;13:2059–2071.
44.
Chang L, Karin M: Mammalian MAP kinase signaling cascades. Nature 2001;420:37–40.
45.
Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003;4:1144–1150.
46.
Cohen J: The immunopathogenesis of sepsis. Nature 2002;420:885–891.
47.
Agrawal A: Different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 2003;171:4984–4989.
48.
Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J: Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003;197:403–411.
49.
Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A: Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 1999;285:736–739.
50.
Netea MG, Van der Meer JW, Kullberg BJ: Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 2004;12:484–488.
51.
Hashimoto M, Asai Y, Ogawa T: Treponemal phospholipids inhibit innate immune responses by pathogen-associated molecular patterns. J Biol Chem 2003;278:44205–44213.
52.
Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LA: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 2003;197:343–350.
53.
Gewirtz AT, Yu Y, Krishna US, Israel DA, Lyons SL, Peek RM: Helicobacter pylori flagellin evades Toll-like receptor 5-mediated innate immunity. J Infect Dis 2004;189:1914–1920.
54.
Sundstrom JB, Little DM, Villinger F, Ellis JE, Ansari AA: Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J Immunol 2004;172:4391–4399.
55.
Iwami K, Matsuguchi T, Masada A, Kikuchi T, Musikacharoen T, Yoshikai Y: Cutting edge: Naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 2001;165:6682–6686.
56.
Means TK, Golenbock DT, Fenton MJ: The biology of Toll-like receptors. Cytokine Growth Factor Rev 2000;11:219–232.
57.
Yeh WC, Chen NJ: Another Toll road. Nature 2003;424:736–737.
58.
Gabay C, Kushner I: Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448–454.
59.
Thompson D, Pepys MB, Wood SP: The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999;7:169–177.
60.
Pepys MB, Hirschfield GM: C-reactive protein: A critical update. J Clin Invest 2003;111:1805–1812.
61.
Knowles MR, Boucher RC: Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002;109:571–577.
62.
Tarran R, Grubb BR, Gatzy JT, Davis CW, Boucher RC: The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 2001;118:223–236.
63.
Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Doring G: Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002;109:317–325.
64.
Bennett WD, Olivier KN, Zeman KL, Hohneker KW, Boucher RC, Knowles MR: Effect of uridine 5-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am J Respir Crit Care Med 1996;153:1796–1801.
65.
Zeitlin PL, Diener-West M, Rubinstein RC, Boyle MP, Lee CK, Brass-Ernst L: Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 2002;6:119–126.
66.
Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ: Curcumin, a major constituent of tumeric, corrects cystic fibrosis defects. Science 2004;304:600–602.
67.
Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N: Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 2004;53:1054–1061.
68.
Zasloff M: Antimicrobial peptides of multicellular organisms. Nature 2002;415:389–395.
69.
Bals R: Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000;1:141–150.
70.
Ganz T: Epithelia: Not just physical barriers. Proc Natl Acad Sci USA 2002;99:3357–3358.
71.
Nagaoka I, Hirota S, Yomogida S, Ohwada A, Hirata M: Synergistic actions of antibacterial neutrophil defensins and cathelicidins. Inflamm Res 2000;49:73–79.
72.
Thompson AB, Bohling T, Payvandi F, Rennard SI: Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J Lab Clin Med 1990;115:148–158.
73.
Ganz T: Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest 2002;109:693–697.
74.
Orsi N: The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals 2004;17:189–196.
75.
Zhu J, Nathan C, Ding A: Suppression of macrophage responses to bacterial lipopolysaccharide by a non-secretory form of secretory leukocyte protease inhibitor. Biochim Biophys Acta 1999;1451:219–223.
76.
Simpson AJ, Maxwell AI, Govan JRW, Haslett C, Sallenave JM: Elafin (elastase-specific inhibitor) has anti-microbial activity against Gram-positive and Gram-negative respiratory pathogens. FEBS Lett 1999;452:309–313.
77.
Canny G, Levy O, Furuta GT, Narravula-Alipati S, Sisson RB, Serhan CN, Colgan SP: Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci USA 2002;99:3902–3907.
78.
Levy O: Therapeutic potential of the bactericidal/permeability-increasing protein. Expert Opin Investig Drugs 2002;11:159–167.
79.
Andrault JB, Gaillard I, Giorgi D, Rouquier S: Expansion of the BPI family by duplication on human chromosome 20: Characterization of the RY gene cluster in 20q11.21 encoding olfactory transporters/antimicrobial-like peptides. Genomics 2003;82:172–184.
80.
Bingle CD, Gorr SU: Host defense in oral and airway epithelia: Chromosome 20 contributes a new protein family. Int J Biochem Cell Biol 2004;36:2144–2152.
81.
Lehrer R, Ganz T, Selsted M: Defensins: Endogenous antibiotic peptides of animal cells. Cell 1991;64:229–230.
82.
Linzmeier R, Ho CH, Hoang BV, Ganz T: A 450-kb contig of defensin genes on human chromosome 8p23. Gene 1999;233:205–211.
83.
Soong L, Ganz T, Ellison A, Caughey G: Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res 1997;46:98–102.
84.
McCray P Jr, Bentley L: Human airway epithelia express a β-defensin. Am J Respir Cell Mol Biol 1997;16:343–349.
85.
Becker MN, Diamond G, Verghese MW, Randell SH: CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000;275:29731–29736.
86.
Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB Jr: Production of β-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998;95:14961–14966.
87.
Dauletbaev N, Gropp R, Frye M, Loitsch S, Wagner TO, Bargon J: Expression of human β-defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals and individuals with acute colds. Respiration 2002;69:46–51.
88.
Zanetti M, Gennaro R, Romeo D: Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995;374:1–5.
89.
Bals R, Wang X, Zasloff M, Wilson JM: The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95:9541–9546.
90.
Schaller-Bals S, Schulze A, Bals R: Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 2002;165:992–995.
91.
Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM: Augmentation of innate host defence by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999;67:6084–6089.
92.
van der Spek JC, Offner GD, Troxler RF, Oppenheim FG: Molecular cloning of human submandibular histatins. Arch Oral Biol 1990;35:137–143.
93.
Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG: Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 2001;69:1402–1408.
94.
Yang D, Biragyn A, Kwak LW, Oppenheim JJ: Mammalian defensins in immunity: More than just microbicidal. Trends Immunol 2002;23:291–296.
95.
Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS: Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 1997;272:L888–L896.
96.
Van Wetering S, van der Linden AC, van Sterkenburg MA, de Boer WI, Kuijpers AL, Schalkwijk J, Hiemstra PS: Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am J Physiol Lung Cell Mol Physiol 2000;278:L51–58.
97.
Van Wetering S, Rahman I, Hiemstra PS, MacNee W: Role of intracellular glutathione in neutrophil defensin-induced IL-8 synthesis and cytotoxicity in airway epithelial cells. Eur Respir J 1998;12:420s.
98.
Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS: Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 2002;72:167–174.
99.
Ganz T, Lehrer RI: Defensins. Pharmacol Ther 1995;66:191–205.
100.
Gennaro R, Zanetti M: Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 2000;55:31–49.
101.
Yang D, Chertov O, Bykovskaia S, Chen Q, Buffo M, Shogan J, Anderson M, Schroder J, Wang J, Howard O, Oppenheim J: β-Defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999;286:525–528.
102.
Devine DA: Antimicrobial peptides in defence of the oral and respiratory tracts. Mol Immunol 2003;40:431–443.
103.
Peschel A: How do bacteria resist human antimicrobial peptides? Trends Microbiol 2002;10:179–186.
104.
Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN: Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 2000;68:1664–1671.
105.
Potempa J, Babbula A, Travis J: Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontology 2000;24:153–192.
106.
Schmidtchen A, Frick IM, Andersson E, Tapper H, Björk L: Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002;46:157–168.
107.
Ganz T, Bellm L, Lehrer RI: Protegrins: New antibiotics of mammalian origin. Expert Opin Investig Drugs 2000;9:1731–1742.
108.
Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM: Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999;67:6084–89.
109.
Bals R, Weiner DJ, Meegalla RL, Wilson JM: Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999;103:1113–1117.
110.
Weidenmaier C, Kristian SA, Peschel A: Bacterial resistance to antimicrobial host defenses: An emerging target for novel antiinfective strategies? Curr Drug Targets 2003;4:643–649.
111.
Park CH, Valore EV, Waring AJ, Ganz T: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276:7806–7810.
112.
Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE, Pennington MW, Norton RS, Westerman ME: Bass hepcidin: Synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 2004 [Epub ahead of print].
113.
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T: IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest2004;113:1271–1276.
114.
Subbalakshmi C, Sitaram N: Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998;160:91–96.
115.
Ryge TS, Doisy X, Ifrah D, Olsen JE, Hansen PR: New indolicidin analogues with potent antibacterial activity. J Pept Res 2004;64:171–185.
116.
Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, Aunis D, Metz-Boutigue MH: Antibacterial and antifungal activities of vasostatin-I, the N-terminal fragment of chromogranin A. J Biol Chem 2000;275;10745–10753.
117.
Goumon Y, Lugardon K, Kieffer B, Lefevre JF, Van Dorsselaer A, Aunis D, Metz-Boutigue MH: Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209–237 secreted by stimulated chromaffin cells. J Biol Chem 1998;273:29847–29856.
118.
Kieffer AE, Goumon Y, Ruh O, Chasserot-Golaz S, Nullans G, Gasnier C, Aunis D, Metz-Boutigue MH: The N- and C-terminal fragments of ubiquitin are important for antimicrobial activities. FASEB J 2003;17:776–778.
119.
Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D: Innate immunity: Involvement of new neuropeptides. Trends Microbiol 2003;11:585–592.
120.
Wright JR: Immunomodulatory functions of surfactant. Physiol Rev 1997;77:931–962.
121.
Atochina EN, Beck JM, Scanlon ST, Preston AM, Beers MF: Pneumocystiscarinii pneumonia alters expression and distribution of lung collectins SP-A and SP-D. J Lab Clin Med 2001;137:429–439.
122.
Palaniyar N, Nadesalingam J, Reid KB: Innate immune collectins bind nucleic acids and enhance DNA clearance in vitro. Ann NY Acad Sci 2003;1010:467–470.
123.
Khoor A, Gray ME, Hull WM, Whitsett JA, Stahlman MT: Developmental expression of SP-A and SP-A mRNA in the proximal and distal respiratory epithelium in the human fetus and newborn. J Histochem Cytochem 1993;41:1311–1319.
124.
Le Vine AM, Whitsett JA: Pulmonary collectins and innate host defense of the lung. Microbes Infect 2001;3:161–166.
125.
Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M, Jobe AH, Wert SE, Stripp BR, Morris RE, Glasser SW, Bachurski CJ, Iwamoto HS, Whitsett JA: Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci USA 1996;93:9594–9599.
126.
LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 1997;158:4336–4340.
127.
LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR: Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998;19:700–708.
128.
LeVine AM, Gwozdz J, Stark J, Bruno MD, Whitsett JA, Korfhagen TA: Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest 1999;103:1015–1021.
129.
Gaynor CD, McCormack FX, Voelker DR, McGowan SE, Schlesinger LS: Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 1995;155:5343–5351.
130.
LeVine AM, Whitsett JA, Gwozdz JA, Richardson TR, Fisher JH, Burhans MS, Korfhagen TR: Distinct effects of surfactant protein A and D deficiency during bacterial infection on the lung. J Immunol 2000;165:3934–3940.
131.
Madsen J, Kliem A, Tornoe I, Skjodt K, Koch C, Holmskov U: Localization of lung surfactant protein D on mucosal surfaces in human tissue. J Immunol 2000;164:5866–5870.
132.
Van Iwaarden JF, Pikaar JC, Storm J, Brouwer E, Verhoef J, Oosting RS, van Golde LM, van Strijp JA: Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem J 1994;303:407–411.
133.
Restrepo CI, Dong Q, Savov J, Mariencheck WI, Wright JR: Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am J Respir Cell Mol Biol 1999;21:576–585.
134.
Hartshorn KL, Crouch E, White MR, Colamussi ML, Kakkanatt A, Tauber B, Shepherd V, Sastry KN: Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol 1998;274:L958–L969.
135.
Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM: By binding SIRP α or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 2003;115:13–23.
136.
Ferguson JS, Voelker DR, Ufnar JA, Dawson AJ, Schlesinger LS: Surfactant protein D inhibition of human macrophage uptake of Mycobacteriumtuberculosis is independent of bacterial agglutination. J Immunol 2002;168:1309–1314.
137.
Hickling TP, Malhotra R, Bright H, McDowell W, Blair ED, Sim RB: Lung surfactant protein A provides a route of entry for respiratory syncytial virus into host cells. Viral Immunol 2000;13:125–135.
138.
Schaeffer LM, McCormack FX, Wu H, Weiss AA: Interactions of pulmonary collectins with Bordetella bronchiseptica and Bordetella pertussis lipopolysaccharide elucidate the structural basis of their antimicrobial activities. Infect Immun 2004;72:7124–7130.
139.
van de Wetering JK, van Golde LM, Batenburg JJ: Collectins: Players of the innate immune system. Eur J Biochem 2004;271:1229–1249.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.