Background: Airway eosinophilia is one of the hallmarks of asthma. Eotaxin may play an important role in eosinophil recruitment. Objectives: To examine the relationship between eotaxin levels in the sputum and eosinophilic inflammation. Methods: The sputum was obtained from 11 non-smokers, 14 smokers and 13 asthmatic patients using a sputum induction method. Eotaxin and interleukin (IL)-5 levels in the sputum were determined by ELISA and immunocytochemical analysis. Results: Asthmatic patients had eosinophilia and smokers showed neutrophilia in their sputum. The eotaxin level in the sputum was significantly higher in smokers (median 412.5, range 91.1–872.2 pg/ml) and asthmatic patients (351.0, 185.0–928.0 pg/ml) compared with non-smokers (123.2, 0–369.0 pg/ml; both p < 0.05). IL-5 was detected in the sputum of 1 non-smoker, none of the smokers and 4 asthmatic patients. The percentage of eotaxin-positive cells was higher in smokers and asthmatic patients than in non-smokers, but the percentage of IL-5-positive cells was significantly higher only in asthmatic patients (p < 0.05). Conclusions: These findings suggest that the elevated eotaxin level in the sputum does not always accompany the increase in eosinophils, and cooperation with another cytokine such as IL-5 may be required for the recruitment of eosinophils.

1.
Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel FB: Eosinophilic inflammation in asthma. N Engl J Med 1990;323:1033–1039.
2.
Djukanovic R, Roche WR, Wilson JW, Beasley CR, Twentyman OP, Howarth RH, Holgate ST: Mucosal inflammation in asthma. Am Rev Respir Dis 1990;142:434–457.
3.
Clutterbuck EJ, Sanderson CJ: Human eosinophil hematopoiesis studied in vitro by means of murine eosinophil differentiation factor (IL5): Production of functionally active eosinophils from normal human bone marrow. Blood 1988;71:646–651.
4.
Sehmi R, Wardlaw AJ, Cromwell O, Kurihara K, Waltmann P, Kay AB: Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood 1992;79:2952–2959.
5.
Tai PC, Sun L, Spry CJ: Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol 1991;85:312–316.
6.
Mattoli S, Stacey MA, Sun G, Bellini A, Marini M: Eotaxin expression and eosinophilic inflammation in asthma. Biochem Biophys Res Commun 1997;236:299–301.
7.
Jose PJ, Adcock IM, Griffiths-Johnson DA, Berkman N, Wells TN, Williams TJ, Power CA: Eotaxin: Cloning of an eosinophil chemoattractant cytokine and increased mRNA expression in allergen-challenged guinea-pig lungs. Biochem Biophys Res Commun 1994;205:788–794.
8.
Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S: Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol 1998;114:137–146.
9.
Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD: Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 1996;2:449–456.
10.
Lamkhioued B, Renzi PM, Abi-Younes S, Garcia-Zepada EA, Allakhverdi Z, Ghaffar O, Rothenberg MD, Luster AD, Hamid Q: Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J Immunol 1997;159:4593–4601.
11.
Yamada H, Yamaguchi M, Yamamoto K, Nakajima T, Hirai K, Morita Y, Sano Y, Yamada H: Eotaxin in induced sputum of asthmatics: Relationship with eosinophils and eosinophil cationic protein in sputum. Allergy 2000;55:392–397.
12.
Pin I, Gibson PG, Kolendowicz R, Girgis Gabardo A, Denburg JA, Hargreave FE, Dolovich J: Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 1992;47:25–29.
13.
Fahy JV, Wong H, Liu J, Boushey HA: Comparison of samples collected by sputum induction and bronchoscopy from asthmatic and healthy subjects. Am J Respir Crit Care Med 1995;152:53–58.
14.
Ying S, Robinson DS, Meng Q, Barata LT, McEuen AR, Buckley MG, Walls AF, Askenase PW, Kay AB: C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: Association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES). J Immunol 1999;163:3976–3984.
15.
Sekiya T, Yamada H, Yamaguchi M, Yamamoto K, Ishii A, Yoshie O, Sano Y, Morita A, Matsushima K, Hirai K: Increased levels of a TH2-type CC chemokine thymus and activation-regulated chemokine (TARC) in serum and induced sputum of asthmatics. Allergy 2002;57:173–177.
16.
Zeibecoglou K, Macfarlane AJ, Ying S, Meng Q, Pavord I, Barnes NC, Robinson DS, Kay AB: Increases in eotaxin-positive cells in induced sputum from atopic asthmatic subjects after inhalational allergen challenge. Allergy 1999;54:730–735.
17.
Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356:2144–2148.
18.
O’Byrne PM, Inman MD, Parameswaran K: The trials and tribulations of IL-5, eosinophils, and allergic asthma. J Allergy Clin Immunol 2001;108:503–508.
19.
Teran LM, Carroll MP, Shute JK, Holgate ST: Interleukin 5 release into asthmatic airways 4 and 24 hours after endobronchial allergen challenge: Its relationship with eosinophil recruitment. Cytokine 1999;11:518–522.
20.
Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD: Expression of eotaxin by human lung epithelial cells: Induction by cytokines and inhibition by glucocorticoids. J Clin Invest 1997;99:1767–1773.
21.
Ryder MI, Saghizadeh M, Ding Y, Nguyen N, Soskolne A: Effects of tobacco smoke on the secretion of interleukin-1β, tumor necrosis factor-α, and transforming growth factor-β from peripheral blood mononuclear cells. Oral Microbiol Immunol 2002;17:331–336.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.