Airway hyperresponsiveness (AHR) to water-soluble cooling lubricants (CL) induced by aerosol administered by tracheal tube was studied in a rabbit model of occupational lung disease. Two commercial CL were examined: the first was of the boric acid amine ester type without biozide (CL-BAE), the second was of the sulfonate type with biozide (CL-SB). 50, 5.0 or 0.5 mg/m3 CL was administered over a period of twice 2 h to six different groups of rabbits. Airway responsiveness (AR) to aerosols of 0.2% and 2.0% acetylcholine solution (ACH) was measured before and after each exposure to CL. A control group A of nine animals not exposed to CL showed no significant respiratory responses following inhalation of 0.2% ACH for 1 min. Conversely, inhalation of 2.0% ACH almost doubled the dynamic elastance (Edyn) in the ACH challenge test in this animal group. Airway resistance (RI), Edyn, slope of inspiratory pressure generation (ΔPes/tI), arterial pressure (Pa) and arterial blood gas tensions (PaO2, PaCO2) were not significantly altered during and after exposures to CL. However, after CL-BAE inhalation of 50 and 5 mg/m3 over 4 h, the amplitude of the ACH-induced airway obstruction indicated by the changes in Edyn rose significantly to almost five times the control response before exposure (group C, D, p < 0.005). Similar changes in RI and ΔPes/tI were obtained. After inhalation of 0.5 mg/m3 CL-BAE (group D), no significant changes in AR were observed. Similar to CL-BAE inhalation of 50 mg/m3, CL-SB caused enlarged AR in the ACH challenge test (group E), whereas no significant changes were found after exposure to 5.0 and 0.5 mg/m3 in groups F and G. In summary, CL aerosols with and without biozide in the range of 50 and 5 mg/m3 applied via tracheal tubes increased AR to ACH within 4 h of exposure in a time- and concentration-dependent manner. It has to be assumed that this augmented AR indicates an increased risk of developing lubricant-induced obstructive lung diseases.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.