In this study the relationship between sulfur dioxide-induced sensory nerve activation and acute bronchoconstriction was assessed. We also studied the effects of sodium metabisulfite, an agent that is suggested to increase airway resistance via activation of sensory nerves. Sulfur dioxide (250 ppm) induced a characteristic biphasic bronchoconstriction. Concomitantly sulfur dioxide induced the release of calcitonin gene-related peptide (CGRP) from capsaicin-sensitive sensory nerves into the pulmonary circulation. In lungs of guinea pigs pretreated with a neurotoxic dose of capsaicin, the first phase of bronchoconstriction was reduced and the overflow of CGRP was not detectable. Tetrodotoxin abolished the initial phase of the bronchoconstriction induced by sulfur dioxide, indicating that a local neural reflex depending on sodium channels was operant. Inhibition of the vanilloid receptor with capsazepine slightly, although not significantly, reduced the contractile responses to sulfur dioxide. Sodium metabisulfite, when infused via the pulmonary circulation (3 mM), induced bronchoconstriction which was abolished by capsaicin pretreatment, but not significantly reduced by capsazepine. The results indicate that in the isolated guinea pig lung inhaled sulfur dioxide induces initial bronchoconstriction in part via sensory nerve activation, while other mechanisms are involved in the late effect. Sensory nerve activation appears to be the only mechanism for bronchoconstriction induced by infused sodium metabisulfite. A role for sensory nerve-mediated bronchoconstriction by sulfur dioxide or sodium metabisulfite via activation of the vanilloid receptor could not be conclusively demonstrated by this study using capsazepine.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.