Pentoxifylline (PTX) is a methylxanthine derivative which improves systemic microvascular flow and tissue oxygen delivery, presumably through actions on platelet aggregation and erythrocyte deformability. Although PTX also improves pulmonary vascular flow, recent evidence suggests that part of this improvement may be due to pulmonary vasodilation. To evaluate these effects we studied isolated rabbit lobar pulmonary artery (PA) ring segments to determine if PTX had direct effects on PA tissues and whether these effects could be modulated pharmacologically or by endothelial disruption. PTX had no effect on PA at resting tension. However, if the PA tension was actively increased by norepinephrine (5 μM), subsequent PTX application caused concentration-dependent PA relaxation. Relaxation occurred promptly and was maximal within 45–60 s. The threshold PTX concentration necessary for relaxation was 1 μM. PTX-induced relaxation was not affected by pretreatment with the cyclo-oxygenase inhibitor indomethacin (1 μM). Endothelial disruption by gentle rubbing of the intimal PA surface abolished relaxation of preconstricted PA by acetylcholine, but had no effect on relaxation by PTX. Although PA at resting tension displayed no response to PTX, PA constriction by norepinephrine in the presence of PTX concentrations > 10 μM was significantly decreased. These data indicate that PTX has direct actions on isolated rabbit PA which are not blocked by indomethacin nor require the presence of intact endothelium. Furthermore, PTX can suppress norepinephrine-induced constriction of isolated PA

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.