Introduction: Patients with chronic obstructive pulmonary disease (COPD) and emphysema experience malnutrition and pulmonary cachexia. Endoscopic lung volume reduction (ELVR) with endobronchial valves has not only improved lung function, exercise capacity, and quality of life but also influenced body weight. Only a few data are available on body composition changes after ELVR. Methods: This single-center prospective study of patients with advanced COPD investigates body composition before and after endoscopic valve treatment using multifrequency bioelectrical impedance analysis (BIA). The following parameters were evaluated in addition to clinical data and routine tests: body weight, body mass index (BMI), basal metabolic rate, total body water, body fat, cell percentage, phase angle, intracellular water (ICW), extracellular water (ECW), extracellular mass (ECM), body cell mass (BCM), lean body mass (ECM + BCM), and fat-free mass index. Results: A total of 23 patients (mean emphysema index 37.2 ± 7.5%, BMI 23.4 ± 4.3 kg/m2) experienced improvements in lung function and exercise capacity with ELVR. Complete lobar atelectasis was achieved in 39.1% of participants. A non-statistically significant increase in body weight and BMI was observed after ELVR (p = 0.111 and p = 0.102). BIA measurement revealed a worsening of phase angle, cell percentage and ECM/BCM and thus of body composition, but without statistical significance. This is mainly due to a statistically significant increase in ECM, ECW, and ICW (all p < 0.001). Conclusion: ELVR demonstrated no beneficial changes in body composition, although patients tend to gain weight. A larger cohort is warranted to confirm these findings.

1.
Halbert
RJ
,
Natoli
JL
,
Gano
A
,
Badamgarav
E
,
Buist
AS
,
Mannino
DM
.
Global burden of COPD: systematic review and meta-analysis
.
Eur Respir J
.
2006
;
28
(
3
):
523
32
.
2.
Ramon
MA
,
Ter Riet
G
,
Carsin
A-E
,
Gimeno-Santos
E
,
Agustí
A
,
Antó
JM
, et al
.
The dyspnoea-inactivity vicious circle in COPD: development and external validation of a conceptual model
.
Eur Respir J
.
2018
;
52
(
3
):
1800079
.
3.
Tramontano
A
,
Palange
P
.
Nutritional state and COPD: effects on dyspnoea and exercise tolerance
.
Nutrients
.
2023
;
15
(
7
):
1786
.
4.
Takenaka
H
,
Yoneda
T
,
Masahiro
FYA
,
Fu
YA
,
Kobayashi
A
,
Ikuno
M
, et al
.
Bioelectrical impedance analysis of body composition in patients with pulmonary emphysema
.
Nihon Kokyuki Gakkai Zasshi
.
1998
;
36
(
8
):
653
8
.
5.
Nezu
K
,
Yoshikawa
M
,
Yoneda
T
,
Kushibe
K
,
Kawaguchi
T
,
Yasukawa
M
, et al
.
The change in body composition after bilateral lung volume reduction surgery for underweight patients with severe emphysema
.
Lung
.
2000
;
178
(
6
):
381
9
.
6.
Kurosaki
H
,
Ishii
T
,
Motohashi
N
,
Motegi
T
,
Yamada
K
,
Kudoh
S
, et al
.
Extent of emphysema on HRCT affects loss of fat-free mass and fat mass in COPD
.
Intern Med
.
2009
;
48
(
1
):
41
8
.
7.
Hartman
JE
,
Vanfleteren
LEGW
,
van Rikxoort
EM
,
Klooster
K
,
Slebos
D-J
.
Endobronchial valves for severe emphysema
.
Eur Respir Rev
.
2019
;
28
(
152
):
180121
.
8.
Fernandez-Bussy
S
,
Kornafeld
A
,
Labarca
G
,
Abia-Trujillo
D
,
Patel
NM
,
Herth
FJF
.
Endoscopic lung volume reduction in relation to body mass index in patients with severe heterogeneous emphysema
.
Respiration
.
2020
;
99
(
6
):
477
83
.
9.
Sanders
K
,
Klooster
K
,
Vanfleteren
LEGW
,
Plasqui
G
,
Dingemans
A-M
,
Slebos
D-J
, et al
.
Effect of bronchoscopic lung volume reduction in advanced emphysema on energy balance regulation
.
Respiration
.
2021
;
100
(
3
):
185
92
.
10.
Sanders
KJC
,
Klooster
K
,
Vanfleteren
LEGW
,
Slebos
D-J
,
Schols
AMWJ
.
CT-derived muscle remodelling after bronchoscopic lung volume reduction in advanced emphysema
.
Thorax
.
2019
;
74
(
2
):
206
7
.
11.
Brock
JM
,
Billeter
A
,
Müller-Stich
BP
,
Herth
F
.
Obesity and the lung: what we know today
.
Respiration
.
2020
;
99
(
10
):
856
66
.
12.
Slebos
D-J
,
Shah
PL
,
Herth
FJF
,
Valipour
A
.
Endobronchial valves for endoscopic lung volume reduction: best practice recommendations from expert panel on endoscopic lung volume reduction
.
Respiration
.
2017
;
93
(
2
):
138
50
.
13.
Achenbach
T
,
Weinheimer
O
,
Buschsieweke
C
,
Heussel
CP
,
Thelen
M
,
Kauczor
HU
.
Fully automatic detection and quantification of emphysema on thin section MD-CT of the chest by a new and dedicated software
.
Rofo
.
2004
;
176
(
10
):
1409
15
.
14.
World Health Organization Obesity. https://www.who.int/health-topics/obesity#tab=tab_1
16.
Walter-Kroker
A
,
Kroker
A
,
Mattiucci-Guehlke
M
,
Glaab
T
.
A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease
.
Nutr J
.
2011
;
10
:
35
.
17.
Hartman
JE
,
Ten Hacken
NHT
,
Klooster
K
,
Boezen
HM
,
de Greef
MHG
,
Slebos
DJ
, et al
.
The minimal important difference for residual volume in patients with severe emphysema
.
Eur Respir J
.
2012
;
40
(
5
):
1137
41
.
18.
Donohue
JF
.
Minimal clinically important differences in COPD lung function
.
COPD
.
2005
;
2
(
1
):
111
24
.
19.
Puhan
MA
,
Chandra
D
,
Mosenifar
Z
,
Ries
A
,
Make
B
,
Hansel
NN
, et al
.
The minimal important difference of exercise tests in severe COPD
.
Eur Respir J
.
2011
;
37
(
4
):
784
90
.
20.
Rott
C
,
Limen
E
,
Kriegsmann
K
,
Herth
F
,
Brock
J
.
Analysis of body composition with bioelectrical impedance analysis in patients with severe COPD and pulmonary emphysema
.
Respir Med
.
2024
;
223
:
107559
.
21.
Criner
GJ
,
Delage
A
,
Voelker
K
,
Hogarth
DK
,
Majid
A
,
Zgoda
M
, et al
.
Improving lung function in severe heterogenous emphysema with the spiration valve system (EMPROVE). A multicenter, open-label randomized controlled clinical trial
.
Am J Respir Crit Care Med
.
2019
;
200
(
11
):
1354
62
.
22.
Davey
C
,
Zoumot
Z
,
Jordan
S
,
McNulty
WH
,
Carr
DH
,
Hind
MD
, et al
.
Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial
.
Lancet
.
2015
;
386
(
9998
):
1066
73
.
23.
Hartman
JE
,
Vanfleteren
LEGW
,
van Rikxoort
EM
,
Klooster
K
,
Slebos
D-J
.
Endobronchial valves for severe emphysema
.
Eur Respir Rev
.
2019
;
28
(
152
):
180121
.
24.
Hopkinson
NS
,
Tennant
RC
,
Dayer
MJ
,
Swallow
EB
,
Hansel
TT
,
Moxham
J
, et al
.
A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease
.
Respir Res
.
2007
;
8
(
1
):
25
.
25.
Rutten
EPA
,
Calverley
PMA
,
Casaburi
R
,
Agusti
A
,
Bakke
P
,
Celli
B
, et al
.
Changes in body composition in patients with chronic obstructive pulmonary disease: do they influence patient-related outcomes
.
Ann Nutr Metab
.
2013
;
63
(
3
):
239
47
.
26.
Kemp
SV
,
Slebos
D-J
,
Kirk
A
,
Kornaszewska
M
,
Carron
K
,
Ek
L
, et al
.
A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (TRANSFORM)
.
Am J Respir Crit Care Med
.
2017
;
196
(
12
):
1535
43
.
27.
Criner
GJ
,
Sue
R
,
Wright
S
,
Dransfield
M
,
Rivas-Perez
H
,
Wiese
T
, et al
.
A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE)
.
Am J Respir Crit Care Med
.
2018
;
198
(
9
):
1151
64
.
28.
Valipour
A
,
Slebos
D-J
,
Herth
F
,
Darwiche
K
,
Wagner
M
,
Ficker
JH
, et al
.
Endobronchial valve therapy in patients with homogeneous emphysema. Results from the IMPACT study
.
Am J Respir Crit Care Med
.
2016
;
194
(
9
):
1073
82
.
29.
Sciurba
FC
,
Ernst
A
,
Herth
FJF
,
Strange
C
,
Criner
GJ
,
Marquette
CH
, et al
.
A randomized study of endobronchial valves for advanced emphysema
.
N Engl J Med
.
2010
;
363
(
13
):
1233
44
.
30.
De Benedetto
F
,
Marinari
S
,
De Blasio
F
.
Phase angle in assessment and monitoring treatment of individuals with respiratory disease
.
Rev Endocr Metab Disord
.
2023
;
24
(
3
):
491
502
.
31.
Maddocks
M
,
Kon
SSC
,
Jones
SE
,
Canavan
JL
,
Nolan
CM
,
Higginson
IJ
, et al
.
Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease
.
Clin Nutr
.
2015
;
34
(
6
):
1245
50
.
32.
Mineo
D
,
Ambrogi
V
,
Lauriola
V
,
Pompeo
E
,
Mineo
TC
.
Recovery of body composition improves long-term outcomes after lung volume reduction surgery for emphysema
.
Eur Respir J
.
2010
;
36
(
2
):
408
16
.
33.
Brock
JM
,
Kontogianni
K
,
Sciurba
FC
,
Criner
GJ
,
Herth
F
.
Utility of rehabilitation prior to bronchoscopic lung volume reduction: post hoc analysis of the VENT trial
.
ERJ Open Res
.
2024
;
10
(
1
):
00735-2023
.
You do not currently have access to this content.