Background: Within-breath analysis of oscillometry parameters is a growing research area since it increases sensitivity and specificity to respiratory pathologies and conditions. However, reference equations for these parameters in White adults are lacking and devices using multiple sinusoids or pseudorandom forcing stimuli have been underrepresented in previous studies deriving reference equations. The current study aimed to establish reference ranges for oscillometry parameters, including also the within-breath ones in White adults using multi-sinusoidal oscillations. Methods: White adults with normal spirometry, BMI ≤30 kg/m2, without a smoking history, respiratory symptoms, pulmonary or cardiac disease, neurological or neuromuscular disorders, and respiratory tract infections in the previous 4 weeks were eligible for the study. Study subjects underwent oscillometry (multifrequency waveform at 5–11–19 Hz, Resmon PRO FULL, RESTECH Srl, Italy) in 5 centers in Europe and the USA according to international standards. The within-breath and total resistance (R) and reactance (X), the resonance frequency, the area under the X curve, the frequency dependence of R (R5–19), and within-breath changes of X (ΔX) were submitted to lambda-mu-sigma models for deriving reference equations. For each output parameter, an AIC-based stepwise input variable selection procedure was applied. Results: A total of 144 subjects (age 20.8–86.3 years; height 146–193 cm; BMI 17.42–29.98 kg/m2; 56% females) were included. We derived reference equations for 29 oscillatory parameters. Predicted values for inspiratory and expiratory parameters were similar, while differences were observed for their limits of normality. Conclusions: We derived reference equations with narrow confidence intervals for within-breath and whole-breath oscillatory parameters for White adults.

1.
Stanojevic
S
,
Kaminsky
DA
,
Miller
MR
,
Thompson
B
,
Aliverti
A
,
Barjaktarevic
I
, et al
.
ERS/ATS technical standard on interpretive strategies for routine lung function tests
.
Eur Respir J
.
2022
;
60
(
1
):
2101499
.
2.
King
GG
,
Bates
J
,
Berger
KI
,
Calverley
P
,
de Melo
PL
,
Dellacà
RL
, et al
.
Technical standards for respiratory oscillometry
.
Eur Respir J
.
2020
;
55
(
2
):
1900753
.
3.
Milne
S
,
Jetmalani
K
,
Chapman
DG
,
Duncan
JM
,
Farah
CS
,
Thamrin
C
, et al
.
Respiratory system reactance reflects communicating lung volume in chronic obstructive pulmonary disease
.
J Appl Physiol
.
2019
;
126
(
5
):
1223
31
.
4.
Kaminsky
DA
,
Simpson
SJ
,
Berger
KI
,
Calverley
P
,
de Melo
PL
,
Dandurand
R
, et al
.
Clinical significance and applications of oscillometry
.
Eur Respir Rev
.
2022
;
31
(
163
):
210208
.
5.
Veneroni
C
,
Valach
C
,
Wouters
EFM
,
Gobbi
A
,
Dellacá
RL
,
Breyer
MK
, et al
.
Diagnostic potential of oscillometry: a population-based approach
.
Am J Respir Crit Care Med
.
2024
;
209
(
4
):
444
53
.
6.
Zannin
E
,
Chakrabarti
B
,
Govoni
L
,
Pompilio
PP
,
Romano
R
,
Calverley
PMA
, et al
.
Detection of expiratory flow limitation by forced oscillations during noninvasive ventilation
.
Am J Respir Crit Care Med
.
2019
;
200
(
8
):
1063
5
.
7.
Dellaca
RL
,
Santus
P
,
Aliverti
A
,
Stevenson
N
,
Centanni
S
,
Macklem
PT
, et al
.
Detection of expiratory flow limitation in COPD using the forced oscillation technique
.
Eur Respir J
.
2004
;
23
(
2
):
232
40
.
8.
Dellacà
RL
,
Pompilio
PP
,
Walker
PP
,
Duffy
N
,
Pedotti
A
,
Calverley
PMA
.
Effect of bronchodilation on expiratory flow limitation and resting lung mechanics in COPD
.
Eur Respir J
.
2009
;
33
(
6
):
1329
37
.
9.
Veneroni
C
,
Pompilio
PP
,
Alving
K
,
Janson
C
,
Nordang
L
,
Dellacà
R
, et al
.
Self-reported exercise-induced dyspnea and airways obstruction assessed by oscillometry and spirometry in adolescents
.
Pediatr Allergy Immunol
.
2022
;
33
(
1
):
e13702
10
.
10.
Schweitzer
C
,
Abdelkrim
IB
,
Ferry
H
,
Werts
F
,
Varechova
S
,
Marchal
F
.
Airway response to exercise by forced oscillations in asthmatic children
.
Pediatr Res
.
2010
;
68
(
6
):
537
41
.
11.
Tiller
NB
,
Cao
M
,
Lin
F
,
Yuan
W
,
Wang
CY
,
Abbasi
A
, et al
.
Dynamic airway function during exercise in COPD assessed via impulse oscillometry before and after inhaled bronchodilators
.
J Appl Physiol
.
2021
;
131
(
1
):
326
38
.
12.
Aarli
BB
,
Eagan
TML
,
Ellingsen
I
,
Bakke
PS
,
Hardie
JA
.
Reference values for within-breath pulmonary impedance parameters in asymptomatic elderly
.
Clin Respir J
.
2013
;
7
(
3
):
245
52
.
13.
De
S
,
Banerjee
N
,
Kushwah
GDS
,
Dharwey
D
.
Regression equations of respiratory impedance of Indian adults measured by forced oscillation technique
.
Lung India
.
2020
;
37
(
1
):
30
6
.
14.
Wang
F
,
Wang
K
,
Bowerman
C
,
Ulla
H
,
Sun
J
,
Topalovic
M
, et al
.
Evaluation of the Global Lung Function Initiative 2012 reference values for spirometry in China: a national cross-sectional study
.
Eur Respir J
.
2022
;
60
(
6
):
2200490
.
15.
Backman
H
,
Lindberg
A
,
Odén
A
,
Ekerljung
L
,
Hedman
L
,
Kainu
A
, et al
.
Reference values for spirometry: report from the obstructive lung disease in northern Sweden studies
.
Eur Clin Respir J
.
2015
;
2
(
1
):
26375
.
16.
Breyer-Kohansal
R
,
Hartl
S
,
Burghuber
OC
,
Urban
M
,
Schrott
A
,
Agusti
A
, et al
.
The LEAD (Lung, heart, social, body) study: objectives, methodology, and external validity of the population-based cohort study
.
J Epidemiol
.
2019
;
29
(
8
):
315
24
.
17.
Quanjer
PH
,
Stanojevic
S
,
Cole
TJ
,
Baur
X
,
Hall
GL
,
Culver
BH
, et al
.
Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations
.
Eur Respir J
.
2012
;
40
(
6
):
1324
43
.
18.
Miller
MR
,
Hankinson
J
,
Brusasco
V
,
Burgos
F
,
Casaburi
R
,
Coates
A
, et al
.
Standardisation of spirometry
.
Eur Respir J
.
2005
;
26
(
2
):
319
38
.
19.
Aarli
BB
,
Calverley
PMA
,
Jensen
RL
,
Eagan
TML
,
Bakke
PS
,
Hardie
JA
.
Variability of within-breath reactance in COPD patients and its association with dyspnoea
.
Eur Respir J
.
2015
;
45
(
3
):
625
34
.
20.
Aarli
BB
,
Calverley
PMA
,
Jensen
RL
,
Dellacà
R
,
Eagan
TM
,
Bakke
PS
, et al
.
The association of tidal EFL with exercise performance, exacerbations, and death in COPD
.
Int J Chron Obstruct Pulmon Dis
.
2017
;
12
:
2179
88
.
21.
Chatterjee
S
,
Simonoff
JS
.
Handbook of regression analysis
.
New York, N.Y.
:
Wiley
;
2013
.
22.
Analysis of Binary Data - D.R. Cox - E. J. Snell - Taylor & Francis Ltd - Chapman & Hall/CRC Monographs on
.
Statistics and applied probability
.
23.
Fasola
S
,
La Grutta
S
,
Cibella
F
,
Cilluffo
G
,
Viegi
G
.
Global lung function initiative 2012 reference values for spirometry in south Italian children
.
Respir Med
.
2017
;
131
:
11
7
.
24.
Oostveen
E
,
Boda
K
,
Van Der Grinten
CPM
,
James
AL
,
Young
S
,
Nieland
H
, et al
.
Respiratory impedance in healthy subjects: baseline values and bronchodilator response
.
Eur Respir J
.
2013
;
42
(
6
):
1513
23
.
25.
Berger
KI
,
Wohlleber
M
,
Goldring
RM
,
Reibman
J
,
Farfel
MR
,
Friedman
SM
, et al
.
Respiratory impedance measured using impulse oscillometry in a healthy urban population
.
ERJ Open Res
.
2021
;
7
(
1
):
00560-2020
.
26.
Rigby
RA
,
Stasinopoulos
DM
,
Lane
PW
.
Generalized additive models for location, scale and shape
.
J R Stat Soc Ser C, Applied Stat
.
2005
;
54
(
3
):
507
54
.
27.
Gobbi
A
,
Pellegrino
R
,
Gulotta
C
,
Antonelli
A
,
Pompilio
P
,
Crimi
C
, et al
.
Short-term variability in respiratory impedance and effect of deep breath in asthmatic and healthy subjects with airway smooth muscle activation and unloading
.
J Appl Physiol
.
2013
;
115
(
5
):
708
15
.
28.
Zannin
E
,
Nyilas
S
,
Ramsey
KA
,
Latzin
P
,
Dellaca’
RL
.
Within-breath changes in respiratory system impedance in children with cystic fibrosis
.
Pediatr Pulmonol
.
2019
;
54
(
6
):
737
42
.
29.
Ohishi
J
,
Kurosawa
H
,
Ogawa
H
,
Irokawa
T
,
Hida
W
,
Kohzuki
M
.
Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study
.
BMJ Open
.
2011
;
1
(
2
):
e000184
.
30.
Johnson
MK
,
Birch
M
,
Carter
R
,
Kinsella
J
,
Stevenson
RD
.
Measurement of physiological recovery from exacerbation of chronic obstructive pulmonary disease using within-breath forced oscillometry
.
Thorax
.
2007
;
62
(
4
):
299
306
.
31.
Dellacà
RL
,
Rotger
M
,
Aliverti
A
,
Navajas
D
,
Pedotti
A
,
Farré
R
.
Noninvasive detection of expiratory flow limitation in COPD patients during nasal CPAP
.
Eur Respir J
.
2006
;
27
(
5
):
983
91
.
32.
Farré
R
.
Measuring intra-subject changes in respiratory mechanics by oscillometry: impedance versus admittance
.
Eur Respir J
.
2022
;
60
(
4
):
2201198
.
33.
Kalchiem-Dekel
O
,
Hines
SE
.
Forty years of reference values for respiratory system impedance in adults: 1977–2017
.
Respir Med
.
2018
;
136
:
37
47
.
34.
Deprato
A
,
Ferrara
G
,
Bhutani
M
,
Melenka
L
,
Murgia
N
,
Usmani
OS
, et al
.
Reference equations for oscillometry and their differences among populations: a systematic scoping review
.
Eur Respir Rev
.
2022
;
31
(
165
):
220021
.
35.
Ducharme
FM
,
Smyrnova
A
,
Lawson
CC
,
Miles
LM
.
Reference values for respiratory sinusoidal oscillometry in children aged 3 to 17 years
.
Pediatr Pulmonol
.
2022
;
57
(
9
):
2092
102
.
36.
Veneroni
C
,
Acciarito
A
,
Lombardi
E
,
Imeri
G
,
Kaminsky
DA
,
Gobbi
A
, et al
.
Artificial intelligence for quality control of oscillometry measures
.
Comput Biol Med
.
2021
;
138
:
104871
.
37.
Veneroni
C
,
Perissin
R
,
Di Marco
F
,
Dellaca
RL
.
Home monitoring of lung mechanics by oscillometry before, during and after severe COVID-19 disease: a case study
.
ERJ Open Res
.
2023
;
9
(
2
):
00480-2022
.
38.
Dandurand
RJ
,
Lavoie
J-P
,
Lands
LC
,
Hantos
Z
;
Oscillometry Harmonisation Study Group
.
Comparison of oscillometry devices using active mechanical test loads
.
ERJ Open Res
.
2019
;
5
(
4
):
00160-2019
.
39.
Rigby
RA
,
Stasinopoulos
DM
.
Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution
.
Stat Med
.
2004
;
23
(
19
):
3053
76
.
You do not currently have access to this content.