Introduction: Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. Methods: A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: n = 220; test cohort: n = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). Results: Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. Conclusion: This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.

1.
Kastelik
JA
.
Management of malignant pleural effusion
.
Lung
.
2013
;
191
(
2
):
165
75
. .
2.
Bibby
AC
,
Dorn
P
,
Psallidas
I
,
Porcel
JM
,
Janssen
J
,
Froudarakis
M
, et al
.
ERS/EACTS statement on the management of malignant pleural effusions
.
Eur Respir J
.
2018
;
52
(
1
):
1800349
. .
3.
Gayen
S
.
Malignant pleural effusion: presentation, diagnosis, and management
.
Am J Med
.
2022
;
135
(
10
):
1188
92
. .
4.
Sriram
KB
,
Relan
V
,
Clarke
BE
,
Duhig
EE
,
Yang
IA
,
Bowman
RV
, et al
.
Diagnostic molecular biomarkers for malignant pleural effusions
.
Future Oncol
.
2011
;
7
(
6
):
737
52
. .
5.
Woo
CG
,
Son
SM
,
Han
HS
,
Lee
KH
,
Choe
KH
,
An
JY
, et al
.
Diagnostic benefits of the combined use of liquid-based cytology, cell block, and carcinoembryonic antigen immunocytochemistry in malignant pleural effusion
.
J Thorac Dis
.
2018
;
10
(
8
):
4931
9
. .
6.
Porcel
JM
,
Vives
M
,
Esquerda
A
,
Salud
A
,
Perez
B
,
Rodriguez-Panadero
F
.
Use of a panel of tumor markers (carcinoembryonic antigen, cancer antigen 125, carbohydrate antigen 15-3, and cytokeratin 19 fragments) in pleural fluid for the differential diagnosis of benign and malignant effusions
.
Chest
.
2004
;
126
(
6
):
1757
63
. .
7.
Scapicchio
C
,
Gabelloni
M
,
Barucci
A
,
Cioni
D
,
Saba
L
,
Neri
E
.
A deep look into radiomics
.
Radiol Med
.
2021
;
126
(
10
):
1296
311
. .
8.
Beig
N
,
Khorrami
M
,
Alilou
M
,
Prasanna
P
,
Braman
N
,
Orooji
M
, et al
.
Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas
.
Radiology
.
2019
;
290
(
3
):
783
92
. .
9.
Liu
Q
,
Huang
Y
,
Chen
H
,
Liu
Y
,
Liang
R
,
Zeng
Q
.
The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma
.
BMC Cancer
.
2020
;
20
(
1
):
533
. .
10.
Park
S
,
Lee
SM
,
Noh
HN
,
Hwang
HJ
,
Kim
S
,
Do
KH
, et al
.
Differentiation of predominant subtypes of lung adenocarcinoma using a quantitative radiomics approach on CT
.
Eur Radiol
.
2020
;
30
(
9
):
4883
92
. .
11.
Yang
F
,
Zhang
J
,
Zhou
L
,
Xia
W
,
Zhang
R
,
Wei
H
, et al
.
CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy
.
Eur Radiol
.
2022
;
32
(
3
):
1538
47
. .
12.
Chen
C
,
Geng
Q
,
Song
G
,
Zhang
Q
,
Wang
Y
,
Sun
D
, et al
.
A comprehensive nomogram combining CT-based radiomics with clinical features for differentiation of benign and malignant lung subcentimeter solid nodules
.
Front Oncol
.
2023
;
13
:
1066360
. .
13.
Traill
ZC
,
Davies
RJ
,
Gleeson
FV
.
Thoracic computed tomography in patients with suspected malignant pleural effusions
.
Clin Radiol
.
2001
;
56
(
3
):
193
6
. .
14.
Yilmaz
U
,
Polat
G
,
Sahin
N
,
Soy
O
,
Gulay
U
.
CT in differential diagnosis of benign and malignant pleural disease
.
Monaldi Arch Chest Dis
.
2005
;
63
(
1
):
17
22
. .
15.
Porcel
JM
,
Pardina
M
,
Bielsa
S
,
Gonzalez
A
,
Light
RW
.
Derivation and validation of a CT scan scoring system for discriminating malignant from benign pleural effusions
.
Chest
.
2015
;
147
(
2
):
513
9
. .
16.
Hallifax
RJ
,
Haris
M
,
Corcoran
JP
,
Leyakathalikhan
S
,
Brown
E
,
Srikantharaja
D
, et al
.
Role of CT in assessing pleural malignancy prior to thoracoscopy
.
Thorax
.
2015
;
70
(
2
):
192
3
. .
17.
Lambin
P
,
Rios-Velazquez
E
,
Leijenaar
R
,
Carvalho
S
,
van Stiphout
RG
,
Granton
P
, et al
.
Radiomics: extracting more information from medical images using advanced feature analysis
.
Eur J Cancer
.
2012
;
48
(
4
):
441
6
. .
18.
Chetan
MR
,
Gleeson
FV
.
Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives
.
Eur Radiol
.
2021
;
31
(
2
):
1049
58
. .
19.
Healy
GM
,
Salinas-Miranda
E
,
Jain
R
,
Dong
X
,
Deniffel
D
,
Borgida
A
, et al
.
Pre-operative radiomics model for prognostication in resectable pancreatic adenocarcinoma with external validation
.
Eur Radiol
.
2022
;
32
(
4
):
2492
505
. .
20.
Pan
J
,
Zhang
K
,
Le
H
,
Jiang
Y
,
Li
W
,
Geng
Y
, et al
.
Radiomics nomograms based on non-enhanced MRI and clinical risk factors for the differentiation of chondrosarcoma from enchondroma
.
J Magn Reson Imaging
.
2021
;
54
(
4
):
1314
23
. .
21.
Ye
L
,
Miao
S
,
Xiao
Q
,
Liu
Y
,
Tang
H
,
Li
B
, et al
.
A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors
.
Rheumatology
.
2022
;
61
(
4
):
1440
7
. .
22.
Dynes
MC
,
White
EM
,
Fry
WA
,
Ghahremani
GG
.
Imaging manifestations of pleural tumors
.
Radiographics
.
1992
;
12
(
6
):
1191
201
. .
23.
Salahudeen
HM
,
Hoey
ET
,
Robertson
RJ
,
Darby
MJ
.
CT appearances of pleural tumours
.
Clin Radiol
.
2009
;
64
(
9
):
918
30
. .
24.
Torre
LA
,
Siegel
RL
,
Jemal
A
.
Lung cancer statistics
.
Adv Exp Med Biol
.
2016
;
893
:
1
19
. .
25.
Siegel
RL
,
Miller
KD
,
Wagle
NS
,
Jemal
A
.
Cancer statistics, 2023
.
CA Cancer J Clin
.
2023
;
73
(
1
):
17
48
. .
26.
Assicot
M
,
Gendrel
D
,
Carsin
H
,
Raymond
J
,
Guilbaud
J
,
Bohuon
C
.
High serum procalcitonin concentrations in patients with sepsis and infection
.
Lancet
.
1993
;
341
(
8844
):
515
8
. .
27.
Lin
MC
,
Chen
YC
,
Wu
JT
,
Ko
YC
,
Wang
CC
.
Diagnostic and prognostic values of pleural fluid procalcitonin in parapneumonic pleural effusions
.
Chest
.
2009
;
136
(
1
):
205
11
. .
28.
Porcel
JM
,
Vives
M
,
Cao
G
,
Bielsa
S
,
Ruiz-Gonzalez
A
,
Martinez-Iribarren
A
, et al
.
Biomarkers of infection for the differential diagnosis of pleural effusions
.
Eur Respir J
.
2009
;
34
(
6
):
1383
9
. .
29.
Lee
SH
,
Lee
EJ
,
Min
KH
,
Hur
GY
,
Lee
SY
,
Kim
JH
, et al
.
Procalcitonin as a diagnostic marker in differentiating parapneumonic effusion from tuberculous pleurisy or malignant effusion
.
Clin Biochem
.
2013
;
46
(
15
):
1484
8
. .
30.
Lee
JH
,
Chang
JH
.
Diagnostic utility of serum and pleural fluid carcinoembryonic antigen, neuron-specific enolase, and cytokeratin 19 fragments in patients with effusions from primary lung cancer
.
Chest
.
2005
;
128
(
4
):
2298
303
. .
31.
Gu
Y
,
Zhai
K
,
Shi
HZ
.
Clinical value of tumor markers for determining cause of pleural effusion
.
Chin Med J
.
2016
;
129
(
3
):
253
8
. .
32.
Cheng
C
,
Yang
Y
,
Yang
W
,
Wang
D
,
Yao
C
.
The diagnostic value of CEA for lung cancer-related malignant pleural effusion in China: a meta-analysis
.
Expert Rev Respir Med
.
2022
;
16
(
1
):
99
108
. .
33.
Chen
Z
,
Yi
L
,
Peng
Z
,
Zhou
J
,
Zhang
Z
,
Tao
Y
, et al
.
Development and validation of a radiomic nomogram based on pretherapy dual-energy CT for distinguishing adenocarcinoma from squamous cell carcinoma of the lung
.
Front Oncol
.
2022
;
12
:
949111
. .
34.
Zhou
T
,
Tu
W
,
Dong
P
,
Duan
S
,
Zhou
X
,
Ma
Y
, et al
.
CT-based radiomic nomogram for the prediction of chronic obstructive pulmonary disease in patients with lung cancer
.
Acad Radiol
.
2023
;
30
(
12
):
2894
903
. .
You do not currently have access to this content.