Patients living with chronic bronchitis (CB) suffer from physical limitations and poor quality of life. In general, treatment options that directly address the mucus hypersecretion component of CB are quite limited. Chronic airway inflammation and the associated hypersecretion and cough that are pathognomonic for CB generally result from long-term exposure to airway irritants such as tobacco use and other environmental insults. This, in turn, results in an increase in the quantity and change in composition of the airway mucosa as a consequence of altered goblet cells, club cells, and submucosal glands. Pulsed electric fields (PEFs) provide a method for eradicating the cellular constituents of tissue with limited impact on the stromal proteins. Preclinical evidence in porcine airways demonstrated that particular PEF waveforms allowed for salutary remodeling of the epithelial and submucosal airway tissue layers and appeared to foster rapid regeneration and recovery of the tissue. Therefore, a therapeutic opportunity might exist whereby the application of a specific form of PEF may result in a reduction of the cellular secretory constituents of the airway while also reducing airway mucosal inflammation. This review discusses the use of such PEF to address the underlying disease processes in CB including challenges around device design, dosing, and appropriate delivery methods. Further, we outline considerations for the transition to human airways along with a brief examination of the initial work treating CB patients, suggesting that the therapy is well tolerated with limited adverse events.

1.
Celli
B
,
Fabbri
L
,
Criner
G
,
Martinez
FJ
,
Mannino
D
,
Vogelmeier
C
.
Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision
.
Am J Respir Crit Care Med
.
2022 Dec 1
206
11
1317
25
.
2.
Lowe
KE
,
Regan
EA
,
Anzueto
A
,
Austin
E
,
Austin
JHM
,
Beaty
TH
.
COPDGene® 2019: redefining the diagnosis of chronic obstructive pulmonary disease
.
Chronic Obstr Pulm Dis
.
2019 Nov
6
5
384
99
.
3.
Kim
V
,
Criner
GJ
.
The chronic bronchitis phenotype in chronic obstructive pulmonary disease: features and implications
.
Curr Opin Pulm Med
.
2015 Mar
21
2
133
41
.
4.
Kim
V
,
Criner
GJ
.
Chronic bronchitis and chronic obstructive pulmonary disease
.
Am J Respir Crit Care Med
.
2013 Feb
187
3
228
37
.
5.
Niewoehner
DE
,
Kleinerman
J
,
Rice
DB
.
Pathologic changes in the peripheral airways of young cigarette smokers
.
N Engl J Med
.
1974 Oct
291
15
755
8
.
6.
Boucher
RC
.
Muco-obstructive lung diseases
.
N Engl J Med
.
2019 May
380
20
1941
53
.
7.
Kim
V
,
Oros
M
,
Durra
H
,
Kelsen
S
,
Aksoy
M
,
Cornwell
WD
.
Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction
.
PLoS One
.
2015 Feb
10
2
e0116108
.
8.
Fahy
JV
,
Dickey
BF
.
Airway mucus function and dysfunction
.
N Engl J Med
.
2010 Dec
363
23
2233
47
.
9.
2023 GOLD Report [Internet]
Glob initiat chronic obstr lung dis: GOLD
. [cited 2023 Mar 15]. Available from: https://goldcopd.org/2023-gold-report-2/.
10.
Dotan
Y
,
So
JY
,
Kim
V
.
Chronic bronchitis: where are we now
.
Chronic Obstr Pulm Dis
.
2019
;
6
(
2
):
178
92
.
11.
Geboers
B
,
Scheffer
HJ
,
Graybill
PM
,
Ruarus
AH
,
Nieuwenhuizen
S
,
Puijk
RS
.
High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy
.
Radiology
.
2020 May
295
2
254
72
.
12.
Thomson
KR
,
Cheung
W
,
Ellis
SJ
,
Federman
D
,
Kavnoudias
H
,
Loader-Oliver
D
.
Investigation of the safety of irreversible electroporation in humans
.
J Vasc Interv Radiol
.
2011 May
22
5
611
21
.
13.
Verma
A
,
Asivatham
SJ
,
Deneke
T
,
Castellvi
Q
,
Neal
RE
.
Primer on pulsed electrical field ablation: understanding the benefits and limitations
.
Circ Arrhythm Electrophysiol
.
2021 Sep
14
9
e010086
.
14.
Wasson
EM
,
Alinezhadbalalami
N
,
Brock
RM
,
Allen
IC
,
Verbridge
SS
,
Davalos
RV
.
Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation
.
Bioelectrochemistry
.
2020 Feb
131
107369
.
15.
Falk
H
,
Forde
PF
,
Bay
ML
,
Mangalanathan
UM
,
Hojman
P
,
Soden
DM
.
Calcium electroporation induces tumor eradication, long-lasting immunity, and cytokine responses in the CT26 colon cancer mouse model
.
Oncoimmunology
.
2017 Mar
6
5
e1301332
.
16.
Beebe
SJ
,
Sain
NM
,
Ren
W
.
Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs)
.
Cells
.
2013 Mar
2
1
136
62
.
17.
Batista Napotnik
T
,
Polajžer
T
,
Miklavčič
D
.
Cell death due to electroporation: a review
.
Bioelectrochemistry
.
2021 Oct
141
107871
.
18.
Ruzgys
P
,
Novickij
V
,
Novickij
J
,
Šatkauskas
S
.
Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range
.
Bioelectrochemistry
.
2019 Jun
127
87
93
.
19.
Munawar
T
,
Fujimori
M
,
Vista
W
,
Solomon
S
,
Srimathveeravalli
G
.
03:45 PM Abstract No. 368 Changes in ph and not temperature significantly contributes to cell death during IRE performed at low-voltage and high pulse numbers
.
J Vasc Interv Radiol
.
2019 Mar
30
3
S162
3
.
20.
Rubinsky
L
,
Guenther
E
,
Mikus
P
,
Stehling
M
,
Rubinsky
B
.
Electrolytic effects during tissue ablation by electroporation
.
Technol Cancer Res Treat
.
2016 Oct
15
5
NP95
103
.
21.
Xie
F
,
Varghese
F
,
Pakhomov
AG
,
Semenov
I
,
Xiao
S
,
Philpott
J
.
Ablation of myocardial tissue with nanosecond pulsed electric fields
.
PLoS One
.
2015 Dec
10
12
e0144833
.
22.
Maor
E
,
Ivorra
A
,
Leor
J
,
Rubinsky
B
.
The effect of irreversible electroporation on blood vessels
.
Technol Cancer Res Treat
.
2007 Aug
6
4
307
12
.
23.
Song
Y
,
Zheng
J
.
The esophagus survives non-thermal irreversible electroporation ablation and gradually rehabilitates
.
Review
.
2020
24.
Maor
E
,
Ivorra
A
,
Rubinsky
B
.
Non-thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation
.
PLoS One
.
2009 Mar
4
3
e4757
.
25.
Edd
JF
,
Horowitz
L
,
Davalos
RV
,
Mir
LM
,
Rubinsky
B
.
In vivo results of a new focal tissue ablation technique: irreversible electroporation
.
IEEE Trans Biomed Eng
.
2006 Jul
53
7
1409
15
.
26.
Rubinsky
B
,
Onik
G
,
Mikus
P
.
Irreversible electroporation: a new ablation modality: clinical implications
.
Technol Cancer Res Treat
.
2007 Feb
6
1
37
48
.
27.
Sun
JH
,
Zhu
TY
,
Chen
XH
,
Nie
CH
,
Ren
ZG
,
Zhou
GH
.
In vivo evaluation of bronchial injury of irreversible electroporation in a porcine lung ablation model by using laboratory, pathological, and CT findings
.
Int J Clin Exp Pathol
.
2018
;
11
(
3
):
1273
80
.
28.
O’Brien
TJ
,
Krimsky
W
,
Neal
II
RE
The safety of transbronchial and percutaneous delivery of pulsed electric fields in lung
San Francisco, CA
American Thoracic Society
2022
.
29.
Neven
K
,
van Es
R
,
van Driel
V
,
van Wessel
H
,
Fidder
H
,
Vink
A
.
Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus
.
Circ Arrhythm Electrophysiol
.
2017 May
10
5
e004672
.
30.
Mercadal
B
,
Arena
CB
,
Davalos
RV
,
Ivorra
A
.
Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study
.
Phys Med Biol
.
2017 Oct
62
20
8060
79
.
31.
Thomsen
S
,
Pearce
JA
.
Thermal damage and rate processes in biologic tissues
. In:
Welch
AJ
,
van Gemert
MJC
, editors.
Optical-thermal response of laser-irradiated tissue
Dordrecht
Springer Netherlands
2010
. p.
487
549
.
32.
Deodhar
A
,
Dickfeld
T
,
Single
GW
,
Hamilton
WC
,
Thornton
RH
,
Sofocleous
CT
.
Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization
.
Am J Roentgenol
.
2011 Mar
196
3
W330
5
.
33.
Reilly
JP
Applied bioelectricity: from electrical stimulation to electropathology
Springer Science & Business Media
2012
.
34.
Meininger
GR
,
Neal
RE
,
Hunter
DW
,
Krimsky
WS
.
Absence of arrhythmogenicity with biphasic pulsed electric fields delivered to porcine airways
.
Ann Biomed Eng
.
2023 Apr
35.
Sciurba
F
,
Comellas
A
,
Majid
A
,
Hogarth
D
,
Marchetti
N
,
Kim
V
Bronchial rheoplasty for chronic bronchitis: 2 Year results from a us feasibility study with rheox? B39. COPD MANAGEMENT: from pharmacologic treatment to novel therapies
American Thoracic Society
2022
. p.
A5598
.
36.
Sciurba
F
,
Comellas
A
,
Majid
A
,
Hogarth
D
,
Marchetti
N
,
Kim
V
Bronchial rheoplasty for chronic bronchitis: results from a US feasibility study with RheOxTM. TP40. TP040 COPD CLINICAL TRIALS AND THERAPIES
American Thoracic Society
2021
. p.
A2263
.
37.
Dorscheid
D
,
Shaipanich
T
,
Liberman
M
,
Martel
S
,
Fortin
M
.
Bronchial rheoplasty for chronic bronchitis: results from a CANADIAN feasibility study with rheox
.
Chest
.
2021 Oct
160
4 Suppl
A1860
.
38.
Valipour
A
,
Fernandez-Bussy
S
,
Ing
AJ
,
Steinfort
DP
,
Snell
GI
,
Williamson
JP
.
Bronchial rheoplasty for treatment of chronic bronchitis. Twelve-month results from a multicenter clinical trial
.
Am J Respir Crit Care Med
.
2020 Sep
202
5
681
9
.
39.
Kon
SSC
,
Canavan
JL
,
Jones
SE
,
Nolan
CM
,
Clark
AL
,
Dickson
MJ
.
Minimum clinically important difference for the COPD Assessment Test: a prospective analysis
.
Lancet Respir Med
.
2014 Mar
2
3
195
203
.
40.
Jones
PW
.
St. George’s respiratory Questionnaire: mcid
.
COPD J Chronic Obstr Pulm Dis
.
2005 Jan
2
1
75
9
.
41.
Kim
V
,
Krimsky
W
,
Bannan
B
.
Bronchial Rheoplasty improves respiratory and sleep symptoms in chronic bronchitis
.
Eur Respir J
.
2021 Sep
58
Suppl 65
).
42.
Tang
M
,
Elicker
BM
,
Henry
T
,
Gierada
DS
,
Schiebler
ML
,
Huang
BK
.
Mucus plugs persist in asthma, and changes in mucus plugs associate with changes in airflow over time
.
Am J Respir Crit Care Med
.
2022 May
205
9
1036
45
.
43.
Lai
HY
,
Rogers
DF
.
Mucus hypersecretion in asthma: intracellular signalling pathways as targets for pharmacotherapy
.
Curr Opin Allergy Clin Immunol
.
2010 Feb
10
1
67
76
.
44.
Laube
BL
,
Links
JM
,
LaFrance
ND
,
Wagner
HN
,
Rosenstein
BJ
.
Homogeneity of bronchopulmonary distribution of 99mTc aerosol in normal subjects and in cystic fibrosis patients
.
Chest
.
1989 Apr
95
4
822
30
.
45.
Sin
DD
,
Man
SF
,
McWilliams
A
,
Lam
S
.
Progression of airway dysplasia and C-reactive protein in smokers at high risk of lung cancer
.
Am J Respir Crit Care Med
.
2006 Mar 1
173
5
535
9
.
46.
Beane
JE
,
Mazzilli
SA
,
Campbell
JD
,
Duclos
G
,
Krysan
K
,
Moy
C
.
Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions
.
Nat Commun
.
2019 Apr
10
1
1856
.
You do not currently have access to this content.