Background: 5-aminolevulinic acid (5-ALA) use is well established in the resection of adult high-grade gliomas. There is growing interest in its usefulness in the paediatric population. The potential benefit of 5-ALA-guided resection motivated our unit to offer the established adult protocol as off-label use. Objective: to determine if 5-ALA guided resection was routinely useful and offered increased gross total resection (GTR) results. Methods: Nineteen patients harbouring a posterior fossa tumour suggestive of either an ependymoma or medulloblastoma (MB) underwent surgery between January 2018 and October 2019. The mean age was 5 years (range 2–12 years). A dose of 20 mg/kg of 5-ALA (Gliolan®) was given 4 h preoperatively. Intraoperatively, the tumours were viewed under violet-blue light and the presence of fluorescence was recorded. Fluorescence status was compared with histopathological classification and grade, Ki-67 index, GTR rate, and a subjective determination of “usefulness” was determined. Results: The case series included ependymoma grade II (n = 6), ependymoma grade III (n = 4), and MB grade IV (n = 9). For the combined cohort, the strong fluorescence rate was 68% (n = 13), the heterogenous fluorescence rate was 26% (n = 5), and the completely negative fluorescence rate was 5% (n = 1). The strong fluorescence rate of 90% found in the combined ependymoma group compared to the 45% strong fluorescence rate in the MB group was statistically significant (p = 0.05). Within the MB group the Ki-67 index was found to be significantly higher in the strongly fluorescent group as opposed to the patchy or non-fluorescent group (77.5 vs. 40%, p = 0.016). Fluorescence was determined to be useful in 63% of all cases. There was no significant relationship between fluorescence and GTR. The relationship between perceived usefulness and resection was not statistically significant. No adverse drug reactions were recorded. Conclusion: This case series adds to the growing body of evidence demonstrating the safety of 5-ALA in the paediatric population. 5-ALA guided resection was found to be useful in the majority of cases but this did not correlate with GTR status. Ependymomas reliably fluoresce in 90% of cases, and 5-ALA-guided resection should be considered when a preoperative diagnosis of ependymoma is suspected.

1.
Stepp
H
,
Beck
T
,
Pongratz
T
,
Meinel
T
,
Kreth
FW
,
Tonn
JC
, et al
ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment
.
J Environ Pathol Toxicol Oncol
.
2007
;
26
(
2
):
157
64
. .
2.
Ferraro
N
,
Barbarite
E
,
Albert
T
,
Berchman
E
,
Shah
A
,
Bregy
A
, et al
The role of 5 aminolaevulinic acid in brain tumor surgery: a systemic review
.
Neurosurg Rev
.
2016
;
39
(
4
):
545
55
.
3.
Stummer
W
,
Stocker
S
,
Wagner
S
,
Stepp
H
,
Fritsch
C
,
Goetz
C
, et al
Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence
.
Neurosurgery
.
1998
;
42
(
3
):
518
25
. .
4.
Pichlmeier
U
,
Bink
A
,
Schackert
G
,
Stummer
W
.
Resection and survival of glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients
.
Neuro Oncol
.
2008
;
10
(
6
):
1025
34
.
5.
Schucht
P
,
Beck
J
,
Abu-Isa
J
,
Andereggen
L
,
Murek
M
,
Seidel
K
, et al
Gross total resection rate in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping
.
Neurosurgery
.
2012
;
71
(
5
):
927
35
.
6.
Stummer
W
,
Pichlmeier
U
,
Meinel
O
,
Zanella
F
,
Reulen
HJ
.
Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma, a randomized controlled multicenter phase lll trial
.
Lancet Oncol
.
2006
;
7
(
5
):
359
60
.
7.
Ruge
JR
,
Liu
J
.
Use of 5-aminolevulinic acid for visualization and resection of a benign pediatric brain tumor
.
J Neurosurg Pediatr
.
2009
;
4
(
5
):
484
6
. .
8.
Agawa
Y
,
Wataya
T
.
The use of 5-aminolevulinic acid to assist gross total resection of pediatric astroblastoma
.
Childs Nerv Syst
.
2018
;
34
(
5
):
971
5
. .
9.
García
L
,
Artero
J
,
Sánchez
ZM
.
Macías: fluorescence-guided resection with 5-aminolevulinic acid of meningeal sarcoma in a child
.
Childs Nerv Syst
.
2015
;
33
(
5
):
1177
80
.
10.
Kim
AV
,
Khachatryan
VA
.
[Intraoperative fluorescence diagnosis using 5-aminolevulinic acid in surgical treatment of children with recurrent neuroepithelial tumors]
.
Zh Vopr Neirokhir Im N N Burdenko
.
2017
;
81
(
1
):
51
7
. .
11.
Preuß
M
,
Renner
C
,
Krupp
W
,
Christiansen
H
,
Fischer
L
,
Merkenschlager
A
.
The use of 5-aminolevulinic acid fluorescence guidance in resection of pediatric brain tumors
.
Childs Nerv Syst
.
2013
;
29
:
1263
7
.
12.
Suzuki
T
,
Scoichiro
I
,
Kohei
F
,
Tomoyuki
K
,
Mitsuaki
S
,
Adachi
J
, et al
Neuroendoscopic photodynamic diagnosis and biopsy of intraventricular germinomas using 5-aminolevulinic acid
.
Childs Nerv Syst
.
2012
;
28
:
1589
669
.
13.
Louis
DN
,
Perry
A
,
Reifenberger
G
,
von Deimling
A
,
Figarella-Branger
D
,
Cavenee
WK
, et al
The 2016 World Health Organization classification of tumors of the central nervous system: a summary
.
Acta Neuropathol
.
2016
;
131
(
6
):
803
20
. .
14.
Avula
S
,
Mallucci
C
,
Kumar
R
,
Pizer
B
.
Posterior fossa syndrome following brain tumor resection: review of pathophysiology and a new hypothesis on its pathogenesis
.
Childs Nerv Syst
.
2015
;
31
:
1859
67
.
15.
Gudrunardottir
T
,
Sehested
A
,
Juhler
M
,
Grill
J
,
Schmiegelow
K
.
Cerebellar mutism: definitions, classification and grading of symptoms
.
Childs Nerv Syst
.
2011
;
27
(
9
):
1361
3
. .
16.
Massimino
M
,
Biassoni
V
,
Gandola
L
,
Garré
ML
,
Gatta
G
,
Giangaspero
F
, et al
Childhood medulloblastoma
.
Crit Rev Oncol Hematol
.
2019
;
135
:
1
134
.
17.
Albright
A
,
Wissoff
J
,
Zeltzer
P
,
Boyett
J
,
Rorke
L
, et al
Effects of medulloblastoma resections on outcome in children: a report from the children’s cancer group
.
Neurosurgery
.
1996
;
38
(
2
):
265
71
.
18.
Zeltzer
,
Boyett
J
,
Finlay
J
,
Albright
A
,
Rorke
L
,
Milstein
J
, et al
Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusion from the children’s cancer group 921 randomized phase III study
.
J Clin Oncol
.
1999
;
17
(
3
):
832
45
.
19.
Massimino
M
,
Solero
CL
,
Garrè
ML
,
Biassoni
V
,
Cama
A
,
Genitori
L
, et al
Second-look surgery for ependymoma: the Italian experience
.
J Neurosurg Pediatr
.
2011
;
8
(
3
):
246
50
. .
20.
Sandford
RA
,
Merchant
TE
,
Zwienenberg-Lee
M
,
Kun
LE
,
Boop
FA
.
Advances in surgical techniques for resection of childhood cerebellopontine angle ependymomas are key to survival
.
Childs Nerv Syst
.
2009
;
25
:
1229
40
.
21.
Briel-Pump
A
,
Beez
T
,
Ebbert
L
,
Remke
M
,
Weinhold
S
,
Sabel
MC
, et al
Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment
.
J Photochem Photobiol B
.
2018
;
189
:
298
305
. .
22.
Meyers
SP
,
Kemp
SS
,
Tarr
RW
.
MR imaging features of medulloblastomas
.
AJR Am J Roentgenol
.
1992
;
158
(
4
):
859
65
. .
23.
Ferguson
SD
,
Levine
NBL
,
Suki
D
,
Tsung
AJ
,
Lang
FF
,
Sawaya
R
, et al
The surgical treatment of tumors of the fourth ventricle: a single-institution experience
.
Int J Surg Case Rep
.
2013
;
4
(
10
):
842
5
.
24.
Ikezaki
K
,
Matsushima
T
,
Inoue
T
,
Yokoyama
N
,
Kaneko
Y
,
Fukui
M
, et al
Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas
.
Neurosurgery
.
1993
;
32
(
1
):
38
44
.
25.
Nazar
GB
,
Hoffman
HJ
,
Becker
LE
,
Jenkin
D
,
Humphreys
RP
,
Hendrik
EB
.
Infratentorial ependymomas in childhood: prognostic factors and treatment
.
J Neurosurg
.
1990
;
72
:
408
17
.
26.
Pierre-Kahn
A
,
Hirsch
JF
,
Roux
FX
,
Renier
D
,
Sainte-Rose
C
.
Intracranial ependymomas in children. Survival and functional results of 47 cases
.
Childs Brain
.
1983
;
10
(
3
):
145
56
.
27.
Qui
B
,
Wang
Y
,
Wand
W
,
Wang
C
,
Wu
P
,
Bao
Y
, et al
Microsurgical management of pediatric ependymomas of the fourth ventricle via the trans-cerebellomedullary fissure approach: a review of 26 cases
.
Oncol Lett
.
2016
;
11
(
6
):
4099
106
.
28.
Spagnoli
D
,
Tomei
G
,
Ceccarelli
G
,
Grimoldi
N
,
Lanterna
A
,
Bello
L
, et al
Combined treatment of fourth ventricle ependymomas: report of 26 cases
.
Surg Neurol
.
2000
;
54
(
1
):
19
26
. .
29.
Chu
ES
,
Wong
TK
,
Yow
CM
.
Photodynamic effect in medulloblastoma: downregulation of matrix metalloproteinases and human telomerase reverse transcriptase expressions
.
Photochem Photobiol Sci
.
2008
;
7
(
1
):
76
83
. .
30.
Ritz
R
,
Scheidle
C
,
Noell
S
,
Roser
F
,
Schenk
M
,
Dietz
K
, et al
In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells
.
PLoS One
.
2012
;
7
(
12
):
e51974
10
. .
31.
Schwake
M
,
Günes
D
,
Köchling
M
,
Brentrup
A
,
Schroeteler
J
,
Hotfilder
M
, et al
Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid
.
Acta Neurochir
.
2014
;
156
(
6
):
1077
84
. .
32.
Schwake
M
,
Nemes
A
,
Dondrop
J
,
Schroeteler
J
,
Schipmann
S
,
Senner
V
, et al
In-vitro use of 5-ALA for photodynamic therapy in pediatric brain tumors
.
Neurosurgery
.
2018
;
83
(
6
):
1328
37
. .
33.
Roth
J
,
Constantini
S
.
5ALA in pediatric brain tumors is not routinely beneficial
.
Childs Nerv Syst
.
2017
;
33
(
5
):
787
92
. .
34.
Schwake
M
,
Schipmann
S
,
Müther
M
,
Köchling
M
,
Brentrup
A
,
Stummer
W
.
5-ALA fluorescence-guided surgery in pediatric brain tumors-a systematic review
.
Acta Neurochir
.
2019
;
161
(
6
):
1099
108
. .
35.
Stummer
W
,
Rodriques
F
,
Schucht
P
,
Preuss
M
,
Wiewrodt
D
,
Nestler
U
, et al
Predicting the “usefulness” of 5-ALA- derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey
.
Acta Neurosurg
.
2014
;
156
:
2315
24
.
36.
Wainwright
JV
,
Endo
T
,
Cooper
JB
,
Tominaga
T
,
Schmidt
MH
.
The role of 5-aminolevulinic acid in spinal tumor surgery: a review
.
J Neurooncol
.
2019
;
141
(
3
):
575
84
. .
37.
Millesi
M
,
Kiesel
B
,
Woehrer
A
,
Hainfellner
JA
,
Novak
K
,
Martínez-Moreno
M
, et al
Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors
.
Neurosurg Focus
.
2014
;
36
(
2
):
E11
9
. .
38.
Moreno
RG
,
García
LMB
,
Bastidas
HI
,
Tirado
CAM
,
Flores
AM
,
Cabezas
JPS
, et al
Fluorescence guided surgery with 5-aminolevulinic acid for resection of spinal cord ependymomas
.
Asian Spine J
.
2019
;
13
(
1
):
119
25
. .
39.
Floeth
FW
,
Sabel
M
,
Ewelt
C
,
Stummer
W
,
Felsberg
J
,
Reifenberger
G
, et al
Comparison of (18)F-FET PET and 5-ALA fluorescence in cerebral gliomas
.
Eur J Nucl Med Mol Imaging
.
2011
;
38
(
4
):
731
41
. .
40.
Stummer
W
,
Novotny
A
,
Stepp
H
,
Goetz
C
,
Bise
K
,
Reulen
HJ
.
Fluorescence-Guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients
.
J Neurosurg
.
2000
;
93
(
6
):
1003
13
. .
41.
Widhalm
G
,
Kiesel
B
,
Woehrer
A
,
Traub-Weidinger
T
,
Preusser
M
,
Marosi
C
, et al
5-aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement
.
PLoS One
.
2013
;
8
(
10
):
e76988
8
. .
42.
Skjøth-Rasmussen
J
,
Bøgeskov
L
,
Sehested
A
,
Klausen
C
,
Broholm
H
,
Nysom
K
.
The use of 5-ALA to assist complete removal of residual non-enhancing part of childhood medulloblastoma: a case report
.
Childs Nerv Syst
.
2015
;
31
(
11
):
2173
7
. .
43.
Puppa
AD
,
Gioffré
G
,
Gardiman
MP
,
Frasson
C
,
Cecchin
D
,
Scienza
R
, et al
Intra-operative 5-aminolevulinic acid (ALA)-induced fluorescence of medulloblastoma: phenotypic variability and CD133+ expression according to different fluorescence patterns
.
Neurol Sci
.
2014
;
35
:
99
102
.
44.
Beez
T
,
Sarikaya-Seiwert
S
,
Steiger
HJ
,
Hänggi
D
.
Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children – a technical report
.
Acta Neurochir
.
2014
;
156
(
3
):
597
604
.
45.
Eicker
S
,
Sarikaya-Seiwert
S
,
Borkhardt
A
,
Gierga
K
,
Turowski
B
,
Heiroth
HJ
, et al
ALA-induced porphyrin accumulation in medulloblastoma and its use for fluorescence-guided surgery
.
Cent Eur Neurosurg
.
2011
;
72
(
2
):
101
3
. .
46.
Barbagallo
GM
,
Certo
F
,
Heiss
K
,
Albanese
V
.
5-ALA fluorescence-assisted surgery in pediatric brain tumors: report of three cases and review of the literature
.
BR J Neurosurg
.
2014
;
28
(
6
):
750
4
. .
47.
Burford
C
,
Kayal
N
,
Pandit
A
,
Tailor
J
,
Lavrador
J
,
Bravo
A
.
5-aminolevulinic acid aided resection of pediatric brain tumours: the UK’s first case series
.
Neuro Oncol
.
2017 Jan
;
19
(
Suppl 1
):
i11
.
48.
Zhang
C
,
Boop
FA
,
Ruge
J
.
The use of 5-aminolevulinic acid in resection of pediatric brain tumors: a critical review
.
J Neurooncol
.
2019
;
141
(
3
):
567
73
. .
49.
Wolburg
H
,
Noell
S
,
Fallier-Becker
P
,
Mack
AF
,
Wolburg-Buchholz
K
.
The disturbed blood-brain barrier in human glioblastoma
.
Mol Aspects Med
.
2012
;
33
(
5–6
):
579
89
. .
50.
Warnke
PC
,
Kopitzki
K
,
Timmer
J
,
Ostertag
CB
.
Capillary physiology of human medulloblastoma: impact on chemotherapy
.
Cancer
.
2006
;
107
(
9
):
2223
7
. .
51.
Saito
K
,
Hirai
T
,
Takeshima
H
,
Kadota
Y
,
Yamashita
S
,
Ivanova
A
, et al
Genetic factors affecting intraoperative 5-aminolevulinic acid-induced fluorescence of diffuse gliomas
.
Radiol Oncol
.
2017
;
51
(
2
):
142
50
. .
52.
Grotzer
MA
,
Geoerger
B
,
Janss
AJ
,
Zhao
H
,
Rorke
LB
,
Phillips
PC
.
Prognostic significance of Ki-67 (MIB-1) proliferation index in childhood primitive neuroectodermal tumors of the central nervous system
.
Med Pediatr Oncol
.
2001
;
36
(
2
):
268
73
. .
53.
Kayaselçuk
F
,
Zorludemir
S
,
Gümürdühü
D
,
Zeren
H
,
Erman
T
.
PCNA and Ki-67 in central nervous system tumors: correlation with the histological type and grade
.
J Neurooncol
.
2002
;
57
(
2
):
115
21
. .
54.
Meurer
RT
,
Martins
DT
,
Hilbig
A
,
Ribeiro
MC
,
Roehe
AV
,
Barbosa-Coutinho
LM
, et al
Immunohistochemical expression of markers Ki-67, NeuN, synaptophysin, P53 and Her2 in medulloblastoma and its correlation with clinicopathological parameters
.
Arq Neuropsiquiatr
.
2008
;
66
(
2B
):
385
90
. .
55.
Ertan
Y
,
Sezak
M
,
Demirağ
B
,
Kantar
M
,
Cetingül
N
,
Turhan
T
, et al
Medulloblastoma: clinicopathologic evaluation of 42 pediatric cases
.
Childs Nerv Syst
.
2009
;
25
(
3
):
353
6
. .
56.
Ferrari
AF
,
Araújo
MBM
,
Aquiar
PH
.
Please JPP: medulloblastoma
.
Arq Neuropsiquiatr
.
2003
;
61
(
3-A
):
547
51
.
57.
Jadali
F
,
Amini
E
,
Esfahani
M
,
Alavi
S
.
Pediatric medulloblastoma and the prognostic value of MIB-1 proliferative factor
.
IJBC
.
2009
;
5
:
7
10
.
58.
Miralbell
R
,
Tolnay
M
,
Bieri
S
,
Probst
A
,
Sappino
A
,
Berchtold
W
, et al
Pediatric medulloblastoma: prognostic value of p53, bcl-2, Mib-1 and microvessel density
.
J Neurooncol
.
1999
;
45
(
2
):
103
10
.
59.
Moschovi
M
,
Koultouki
E
,
Stefanaki
K
,
Sfakianos
G
,
Tourkantoni
N
,
Prodromou
N
, et al
Prognostic significance of angiogenesis in relation to Ki-67, p-53, p-27, and bcl-2 expression in embryonal tumors
.
Pediatr Neurosurg
.
2011
;
47
(
4
):
241
7
. .
60.
Vasugi
GA
,
Sundaram
S
,
D’Cruze
L
,
Rajendrau
A
,
Scott
JX
.
Comparative immunohistochemical analysis of Ki-67 in a spectrum of pediatric solid tumors
.
Asian J Neurosurg
.
2018
;
13
(
4
):
1026
32
.
61.
Ming-Tak Ho
D
,
Hsu
C
,
Wong
T
,
Ting
L
,
Chiang
H
.
Atypical teratoid/rhabdoid tumor of the central nervous system: a comparative study with primitive neuroectodermal tumor/medulloblastoma
.
Acta Neuropathol
.
2000
;
99
:
482
8
.
62.
Quiñones-Hinojosa
A
,
Sanai
N
,
Smith
JS
,
McDermott
MW
.
Techniques to assess the proliferative potential of brain tumors
.
J Neurooncol
.
2005
;
74
(
1
):
19
30
.
63.
Nam
DH
,
Wang
KC
,
Kim
YM
,
Chi
JG
,
Kim
SK
,
Cho
BK
.
The effect of isochromosome 17q presence, proliferative and apoptotic indices, expression of c-erbB-2, bcl-2 and p53 proteins on the prognosis of medulloblastoma
.
J Korean Med Sci
.
2000
;
15
(
4
):
452
6
. .
64.
Ito
S
,
Hoshino
T
,
Prados
MD
,
Edwards
MSB
.
Cell kinetics of medulloblastomas
.
Cancer
.
1992
;
70
(
3
):
672
8
.
65.
Patereli
A
,
Alexiou
GA
,
Stefanaki
K
,
Moschovi
M
,
Doussis-Anagnostopoulou
I
,
Prodromou
N
, et al
Expression of epidermal growth factor receptor and HER-2 in pediatric embryonal brain tumors
.
Pediatr Neurosurg
.
2010
;
46
(
3
):
188
92
. .
66.
Sharma
V
,
Shoaib
Y
,
Gupta
LN
,
Dagar
A
.
P53 and Ki-67 expression in primary pediatric brain tumors: does it correlate with presentation, histological grade, and outcome
.
Asian J Neurosurg
.
2018
;
13
(
4
):
1026
32
.
67.
Suzuki
S
,
Oka
H
,
Kawano
N
,
Tanaka
S
,
Utsuki
S
,
Fujii
K
.
Prognostic value of Ki-67 (MIB-1) and p53 in ependymomas
.
Brain Tumor Pathol
.
2001
;
18
(
2
):
151
4
.
68.
Vaishali
SS
,
Tatke
M
,
Singh
D
,
Sharam
A
.
Histological spectrum of ependymomas and correlation of p53 and Ki-67 expression with ependymoma grade and subtype
.
Indian J Cancer
.
2004
;
41
(
2
):
66
71
.
69.
Valshall
SS
,
Tatke
M
,
Singh
D
,
Sharma
A
.
Histological spectrum of ependymomas and correlation of p53 and Ki-67 expression with ependymoma grade and subtype
.
Indian J Cancer
.
2004
;
41
(
2
):
66
71
. .
70.
Bennetto
L
,
Foreman
N
,
Harding
B
,
Hayward
R
,
Ironside
J
,
Love
S
, et al
Ki-67 immunolabelling index is a prognostic indicator in childhood posterior fossa ependymomas
.
Neuropathol Appl Neurobiol
.
1998
;
24
(
6
):
434
40
. .
71.
Korshunov
A
,
Golanov
A
,
Timirgaz
V
.
Immunohistochemical markers for intracranial ependymoma recurrence. An analysis of 88 cases
.
J Neurol Sci
.
2000
;
177
(
1
):
72
82
. .
72.
Verstegen
MJT
,
Troost
D
,
Leenstra
S
,
IJlst-Keizers
H
,
Bosch
DA
.
Proliferation- and apoptosis-related proteins in intracranial ependymomas: an immunohistochemical analysis
.
J Neurooncol
.
2002
;
56
(
1
):
21
8
.
73.
Zamecnik
J
,
Snuderl
M
,
Eckschlager
T
,
Chanova
M
,
Hladikova
M
,
Tichy
M
, et al
Pediatric intracranial ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors
.
Mod Pathol
.
2003
;
16
(
10
):
980
91
. .
74.
Motekallemi
A
,
Jeltema
HR
,
Metzemaekers
JD
,
Van Dam
GM
,
Crane
LM
,
Groen
RJ
.
The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas – a critical review
.
Neurosurg Rev
.
2015
;
38
(
4
):
619
28
.
75.
Puppa
AD
,
Rustemi
OR
,
Gioffré
G
,
Troncon
I
,
Lombardi
G
,
Rolma
G
, et al
Predictive value of intraoperative 5-aminolevulinic acid-induced fluorescence for detecting bone invasion in meningioma surgery
.
J Neurosurg
.
2014
;
120
:
840
5
.
76.
Ishihara
R
,
Katayama
Y
,
Watanabe
T
,
Yoshino
A
,
Fukushima
T
,
Sakatani
K
.
Quantitative spectroscopic analysis of 5-aminilevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas
.
Neurol Med Chir (Tokyo)
.
2007
;
47
(
2
):
53
7; discussion 57
.
77.
Sanai
N
,
Snyder
LA
,
Honea
NJ
,
Coons
SW
,
Eschbacher
JM
,
Smith
KA
, et al
Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas
.
J Neurosurg
.
2011
;
115
(
4
):
740
8
. .
78.
Ennis
SR
,
Novotny
A
,
Xiang
J
,
Shakui
P
,
Masada
T
,
Stummer
W
, et al
Transport of 5-aminolevulinic acid between blood and brain
.
Brain Res
.
2003
;
959
(
2
):
226
34
. .
79.
Samkoe
KS
,
Gibbs-Strauss
SL
,
Yang
HH
,
Khan Hekmatyar
S
,
Jack Hoopes
P
,
O’Hara
JA
, et al
Protoporphyrin IX fluorescence contrast in invasive glioblastomas is linearly correlated with Gd enhanced magnetic resonance image contrast but has higher diagnostic accuracy
.
J Biomed Opt
.
2011
;
16
(
9
):
096008
. .
80.
Wataya
T
.
Surg-34. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of pediatric brain tumors
.
Neuro Oncol
.
2017 Nov
;
19
(
Suppl 6
):
vi242
. .
81.
Schwake
M
,
Kaneko
S
,
Suero Molina
E
,
Müther
M
,
Schipmann
S
,
Köchling
M
, et al
Spectroscopic measurement of 5-ALA-induced intracellular protoporphyrin IX in pediatric brain tumors
.
Acta Neurochir
.
2019
;
161
(
10
):
2099
105
. .
82.
Eljamel
MS
,
Goodman
C
,
Moseley
H
.
ALA and photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme. A single centre phase III randomised controlled trial
.
Lasers Med Sci
.
2008
;
23
(
4
):
361
7
.
84.
Alcorn
J
,
McNamara
PJ
.
Pharmacokinetics in the newborn
.
Adv Drug Deliv Rev
.
2003
;
55
(
5
):
667
86
. .
85.
Goryaynov
SA
,
Okhlopkov
VA
,
Golbin
DA
,
Chernyshov
KA
,
Svistov
DV
,
Martynov
BV
, et al
Fluorescence diagnosis in neurooncology: retrospective analysis of 653 cases
.
Front Oncol
.
2019
;
9
(
830
):
830
8
. .
86.
Kamp
MA
,
Molle
ZK
,
Munoz-Bendix
C
,
Rapp
M
,
Sabel
M
,
Steiger
H-J
, et al
Various shades of red–a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery
.
Neurosurg Rev
.
2018
;
41
(
1
):
3
18
.
87.
Stummer
W
,
Koch
R
,
Valle
RD
,
Roberts
DW
,
Sanai
N
,
Kalkanis
S
, et al
Intraoperative fluorescence diagnosis in the brain: a systematic review and suggestions for future standards on reporting diagnostic accuracy and clinical utility
.
Acta Neurochir
.
2019
;
161
(
10
):
2083
98
. .
88.
Khurana
AKM
,
Moriyama
Y
,
Wilson
BC
.
Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements
.
J Biomed Opt
.
2010
;
15
(
6
):
1
12
.
89.
Wei
L
,
Fujita
Y
,
Sanai
N
,
Liu
JTC
.
Toward quantitative neurosurgical guidance with high-resolution microscopy of 5-aminolevulinic acid-induced protoporphyrin IX
.
Front Oncol
.
2019
;
9
(
592
):
1
7
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.