Introduction: Hydrocephalus is a disorder in which the circulation of cerebrospinal fluid is altered in a manner that leads to its accumulation in the ventricles and subarachnoid space. Its impact on the neuronal density and networks in the overlying cerebral cortex in a time-dependent neonatal hydrocephalic process is largely unknown. We hypothesize that hydrocephalus will affect the cytoarchitecture of the cerebral cortical mantle of neonatal hydrocephalic mice, which will in turn modify sensorimotor processing and neurobehaviour. Objective: The purpose of this study is to probe the effect of hydrocephalus on 3 developmental milestones (surface righting reflex, cliff avoidance reflex, and negative geotaxis) and on cortical neuronal densities in neonatal hydrocephalic mice. Methods: Hydrocephalus was induced in 1-day-old mice by intracisternal injection of sterile kaolin suspension. The pups were tested for reflex development and sensorimotor ability using surface righting reflex (PND 5, 7, and 9), cliff avoidance (PND 6), and negative geotaxis (PND 10 and 12) prior to their sacrifice on PND 7, 14, and 21. Neuronal density and cortical thickness in the sensorimotor cortex were evaluated using atlas-based segmentation of the neocortex and boundary definition in 4-μm paraffin-embedded histological sections with hematoxylin and eosin as well as cresyl violet stains. Results: Surface righting and cliff avoidance activities were significantly impaired in hydrocephalic pups but no statistically significant difference was observed in negative geotaxis in both experimental and control pups. The neuronal density of the sensorimotor cortex was significantly higher in hydrocephalic mice than in age-matched controls on PND 14 and 21 (373.20 ± 21.54 × 10−6 μm2 vs. 157.70 ± 21.88 × 10−6 μm2; 230.0 ± 44.1 × 10−6 μm2 vs. 129.60 ± 3.72 × 10−6 μm2, respectively; p < 0.05). This was accompanied by reduction in the cortical thickness (µm) in the hydrocephalic mice on PND 7 (2,409 ± 43.37 vs. 3,752 ± 65.74, p < 0.05), PND 14 (2,035 ± 322.10 vs. 4,273 ± 67.26, p < 0.05), and PND 21 (1,676 ± 33.90 vs. 4,945 ± 81.79, p < 0.05) compared to controls. Conclusion: In this murine model of neonatal hydrocephalus, the quantitative changes in the cortical neuronal population may play a role in the observed changes in neurobehavioural findings.

1.
Di Curzio
DL
.
Animal models of hydrocephalus
.
OJMN
.
2018
;
08
(
01
):
57
71
. .
2.
Di Curzio
DL
,
Turner-Brannen
E
,
Mao
X
,
Del Bigio
MR
.
Magnesium sulfate treatment for juvenile ferrets following induction of hydrocephalus with kaolin
.
Fluids Barriers CNS
.
2016
;
13
:
7
. .
3.
Rodríguez
EM
,
Guerra
MM
.
Neural stem cells and fetal-onset hydrocephalus
.
Pediatr Neurosurg
.
2017
;
52
(
6
):
446
. .
4.
Rodríguez
EM
,
Guerra
M
,
Ortega
E
. In:
Limbrick
D
,
Leonardk
J
, editors.
Physiopathology of foetal onset hydrocephalus in cerebrospinal fluid disorders: lifelong implications
.
Berna, Suiza
:
Springer International Publishing
;
2019
.
ISBN: 978–3–319–97928–1
.
5.
Henzi
R
,
Vío
K
,
Jara
C
,
ConradJohanson
ECE
,
McAllister
JP
,
Rodríguez
EM
, et al
Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model
.
Cell and Tissue Res
.
2020
;
381
(
1
):
141
61
.
6.
Fujitani
M
,
Sato
R
,
Yamashita
T
.
Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis
.
Sci Rep
.
2017
;
7
(
1
):
12007
7.
Di Curzio
DL
.
Neuropathological changes in hydrocephalus: a comprehensive review
.
OJMN
.
2018
;
8
:
1
29
.
8.
Rodríguez
EM
,
Guerra
MM
,
Vío
K
,
González
C
,
Ortloff
A
,
Bátiz
LF
, et al
A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus
.
Biol Res
.
2012
;
45
(
3
):
231
42
. .
9.
Zhang
J
,
Williams
MA
,
Rigamonti
D
.
Genetics of human hydrocephalus
.
J Neurol
.
2006
;
253
(
10
):
1255
66
. .
10.
Lourenço
J
,
Bacci
A
.
Human-specific cortical synaptic connections and their plasticity: is that what makes us human?
PLoS Biol
.
2017
;
15
(
1
):
e2001378
. .
11.
Roth
G
,
Dicke
U
.
Evolution of the brain and intelligence
.
Trends Cogn Sci
.
2005
;
9
(
5
):
250
7
. .
12.
Zhang
S
,
Ye
X
,
Bai
G
,
Fu
Y
,
Mao
C
,
Wu
A
, et al
Alterations in cortical thickness and white matter integrity in mild-to-moderate communicating hydrocephalic school-aged children measured by whole-brain cortical thickness mapping and DTI
.
Neural Plast
.
2017
;
2017
:
5167973
. .
13.
Jones
HC
,
Bucknall
RM
,
Harris
NG
.
The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study
.
Acta Neuropathol
.
1991
;
82
(
3
):
217
24
. .
14.
Mashayekhi
F
,
Draper
CE
,
Bannister
CM
,
Pourghasem
M
,
Owen-Lynch
PJ
,
Miyan
JA
.
Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF
.
Brain
.
2002
;
125.8
:
1859
74
. .
15.
Hale
PM
,
McAllister
JP
,
Katz
SD
,
Wright
LC
,
Lovely
TJ
,
Miller
DW
, et al
Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement
.
Neurosurgery
.
1992
;
31
(
6
):
1085
96
. .
16.
Jha
SC
,
Xia
K
,
Ahn
M
,
Girault
JB
,
Li
G
,
Wang
L
, et al
Environmental influences on infant cortical thickness and surface area
.
Cereb Cortex
.
2019 Mar 1
;
29
(
3
):
1139
49
.
17.
Rakic
P
.
Evolution of the neocortex: a perspective from developmental biology
.
Nat Rev Neurosci
.
2009
;
10
(
10
):
724
35
. .
18.
Kandel
E
,
Schwartz
JH
,
Jessell
TM
,
Siegelbaum
SA
,
Hudspeth
AJ
.
Principles of neural science
. 5th ed.
New York
:
McGraw Hill Professional
;
2013
.
19.
Salat
DH
,
Buckner
RL
,
Snyder
AZ
,
Greve
DN
,
Desikan
RS
,
Busa
E
, et al
Thinning of the cerebral cortex in aging
.
Cereb Cortex
.
2004
;
14
(
7
):
721
30
. .
20.
Querbes
O
,
Aubry
F
,
Pariente
J
,
Lotterie
JA
,
Démonet
JF
,
Duret
V
, et al
Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve
.
Brain
.
2009
;
132
:
2036
47
.
21.
Jones
HC
,
Harris
NG
,
Rocca
JR
,
Andersohn
RW
.
Progressive changes in cortical metabolites at three stages of infantile hydrocephalus studied by in vitro NMR spectroscopy
.
J Neurotrauma
.
1997
;
14
(
9
):
587
602
. .
22.
Harris
NG
,
McAllister
JP
 II
,
Conaughty
JM
,
Jones
HC
.
The effect of inherited hydrocephalus and shunt treatment on cortical pyramidal cell dendrites in the infant H-Tx rat
.
Exp Neurol
.
1996
;
141
(
2
):
269
79
. .
23.
Harris
NG
,
Plant
HD
,
Inglis
BA
,
Briggs
RW
,
Jones
HC
.
Neurochemical changes in the cerebral cortex of treated and untreated hydrocephalic rat pups quantified with in vitro 1H-NMR spectroscopy
.
J Neurochem
.
1997
;
68
(
1
):
305
12
. .
24.
Salvador
SF
,
Henriques
JC
,
Munguambe
M
,
Vaz
RM
,
Barros
HP
.
Hydrocephalus in children less than 1 year of age in northern Mozambique
.
Surg Neurol Int
.
2014
;
5
:
175
. .
25.
Guerra
M
.
Neural stem cells: are they the hope of a better life for patients with fetal-onset hydrocephalus?
Fluids Barriers CNS
.
2014
;
11
:
7
. .
26.
Cohen
AR
,
Leifer
DW
,
Zechel
M
,
Flaningan
DP
,
Lewin
JS
,
Lust
WD
.
Characterization of a model of hydrocephalus in transgenic mice
.
J Neurosurg
.
1999
;
91
(
6
):
978
88
. .
27.
Vogel
P
,
Read
RW
,
Hansen
GM
,
Payne
BJ
,
Small
D
,
Sands
AT
, et al
Congenital hydrocephalus in genetically engineered mice
.
Vet Pathol
.
2012
;
49
(
1
):
166
81
. .
28.
Del Bigio
MR
,
Enno
TL
.
Effect of hydrocephalus on rat brain extracellular compartment
.
Cerebrospinal Fluid Res
.
2008
;
5
:
12
. Available from: http://www.cerebrospinalfluidresearch.com/content.
29.
Khan
OH
,
Enno
TL
,
Del Bigio
MR
.
Brain damage in neonatal rats following kaolin induction of hydrocephalus
.
Exp Neurol
.
2006
;
200
(
2
):
311
20
. .
30.
Del Bigio
MR
,
Slobodian
I
,
Schellenberg
AE
,
Buist
RJ
,
Kemp-Buors
TL
.
Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus
.
Fluids Barriers CNS
.
2011
;
8
:
22
. Available from: http://www.fluidsbarrierscns.com/content/8/1/22.
31.
Femi-Akinlosotu
OM
,
Shokunbi
MT
,
Naicker
T
.
Dendritic and synaptic degeneration in pyramidal neurons of the sensorimotor cortex in neonatal mice with kaolin-induced hydrocephalus
.
Front Neuroanat
.
2019 24 Apr
;
13
:
38
.
32.
Silverberg
GD
,
Miller
MC
,
Pascale
CL
,
Caralopoulos
IN
,
Agca
Y
,
Agca
C
, et al
Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP
.
Fluids Barriers CNS
.
2015
;
12
(
1
):
2
. .
33.
Olopade
FE
,
Shokunbi
MT
,
Sirén
AL
.
The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats
.
Fluids Barriers CNS
.
2012
;
9
(
1
):
19
. .
34.
Fox
WM
.
Reflex-ontogeny and behavioural development of the mouse
.
Anim Behav
.
1965
;
13
(
2
):
234
41
. .
35.
Feather-Schussler
DN
,
Ferguson
TS
.
A battery of motor tests in a neonatal mouse model of cerebral palsy
.
J Vis Exp
.
2016
;
117
(
117
):
e53569
. .
36.
Tamashiro
KL
,
Wakayama
T
,
Blanchard
RJ
,
Blanchard
DC
,
Yanagimachi
R
.
Postnatal growth and behavioral development of mice cloned from adult cumulus cells
.
Biol Reprod
.
2000
;
63
(
1
):
328
34
. .
37.
Colea
TB
,
Fishera
JC
,
Burbachera
TM
,
Costa
LG
,
Furlong
CE
.
Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon
.
Neurotoxicol Teratol
.
2012
;
34
(
3
):
311
22
.
38.
Khalki
L
,
Ba M'hamed
S
,
Sokar
Z
,
Bennis
M
,
Vinay
L
,
Bras
H
, et al
Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice
.
PLoS One
.
2013
;
8
(
11
):
e80013
. .
39.
Lee
J
,
Ehlers
C
,
Crews
F
,
Niethammer
M
,
Budin
F
,
Paniagua
B
, et al
Automatic cortical thickness analysis on rodent brain
.
Proc SPIE Int Soc Opt Eng
.
2011
;
7962
:
7962481
. .
40.
Butchbach
ME
,
Rose
FF
,
Rhoades
S
,
Marston
J
,
McCrone
JT
,
Sinnott
R
, et al
Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy
.
Biochem Biophys Res Commun
.
2010
;
391
(
1
):
835
40
. .
41.
Lopes
LS
,
Machado
HR
,
Lachat
JJ
.
Study of corpus callosum in experimental hydrocephalic wistar rats
.
Acta Cir Bras
.
2003
;
18
(
5
):
10
4
. Available from: www.scielo.br/acb.
42.
Podgorac
J
,
Pešić
V
,
Pavković
Ž
,
Martać
L
,
Kanazir
S
,
Filipović
L
, et al
Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development
.
Behav Brain Res
.
2016
;
311
:
99
109
. .
43.
Williams
MT
,
Braun
AA
,
Amos-Kroohs
RM
,
McAllister
JP
,
Lindquist
DM
,
Mangano
FT
, et al
Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats
.
Int J Dev Neurosci
.
2014
;
35
:
7
15
. .
44.
Jusué-Torres
I
,
Jeon
LH
,
Sankey
EW
,
Vivas-Buitrago
T
,
Crawford
JA
, et al
A novel experimental animal model of adult chronic hydrocephalus
.
Neurosurgery
.
2016 Nov
;
79
(
5
):
746
56
.
45.
Kihara
T
,
Surjono
TW
,
Sakamoto
M
,
Matsuo
T
,
Yasuda
Y
,
Tanimura
T
.
Effects of prenatal rubratoxin-B exposure on behaviors of mouse offspring
.
Toxicol Sci
.
2001
;
61
(
2
):
368
73
. .
46.
Hevner
RF
,
Daza
RA
,
Rubenstein
JL
,
Stunnenberg
H
,
Olavarria
JF
,
Englund
C
.
Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons
.
Dev Neurosci
.
2003
;
25
(
2–4
):
139
51
. .
47.
Salat
DH
,
Buckner
RL
,
Snyder
AZ
,
Greve
DN
,
Desikan
RS
,
Busa
E
, et al
Thinning of the cerebral cortex in aging
.
Cereb Cortex
.
2004
;
14
(
7
):
721
30
. .
48.
Dicke
U
,
Roth
G
.
Neuronal factors determining high intelligence
.
Philos Trans R Soc Lond B Biol Sci
.
2016
;
371
(
1685
):
20150180
. .
49.
Witelson
SF
,
Glezer
II
,
Kigar
DL
.
Women have greater density of neurons in posterior temporal cortex
.
J Neurosci
.
1995
;
15
(
5 Pt 1
):
3418
28
. .
50.
Ivenshitz
M
,
Segal
M
.
Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus
.
J Neurophysiol
.
2010
;
104
(
2
):
1052
60
. .
51.
Biffi
E
,
Regalia
G
,
Menegon
A
,
Ferrigno
G
,
Pedrocchi
A
.
The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study
.
PLoS One
.
2013
;
8
(
12
):
e83899
. .
52.
Collins
CE
,
Airey
DC
,
Young
NA
,
Leitch
DB
,
Kaas
JH
.
Neuron densities vary across and within cortical areas in primates
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
36
):
15927
32
.
53.
Sporns
O
,
Zwi
JD
.
The small world of the cerebral cortex
.
Neuroinformatics
.
2004
;
2
(
2
):
145
62
. .
54.
Lerch
JP
,
Carroll
JB
,
Dorr
A
,
Spring
S
,
Evans
AC
,
Hayden
MR
, et al
Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease
.
NeuroImage
.
2008
;
41
(
2
):
243
51
. .
55.
Diamond
MC
,
Johnson
RE
,
Ehlert
J
.
A comparison of cortical thickness in male and female rats: normal and gonadectomized, young and adult
.
Behav Neural Biol
.
1979
;
26
(
4
):
485
91
. .
56.
Narr
KL
,
Woods
RP
,
Thompson
PM
,
Szeszko
P
,
Robinson
D
,
Dimtcheva
T
, et al
Relationships between IQ and regional cortical gray matter thickness in healthy adults
.
Cereb Cortex
.
2007
;
17
(
9
):
2163
71
. .
57.
Wright
LC
,
McAllister
JP
 II
,
Katz
SD
,
Miller
DW
,
Lovely
TJ
,
Salotto
AG
, et al
Cytological and cytoarchitectural changes in the feline cerebral cortex during experimental infantile hydrocephalus
.
Pediatr Neurosurg
.
1991
;
16
(
3
):
139
55
.
58.
Yeom
KW
,
Lober
RM
,
Alexander
A
,
Cheshier
SH
,
Edwards
MS
.
Hydrocephalus decreases arterial spin-labeled cerebral perfusion
.
AJNR Am J Neuroradiol
.
2014
;
35
(
7
):
1433
9
. .
59.
Owler
BK
,
Pickard
JD
.
Normal pressure hydrocephalus and cerebral blood flow: a review
.
Acta Neurol Scand
.
2001
;
104
(
6
):
325
42
. .
60.
Del Bigio
MR
,
Di Curzio
DL
.
Nonsurgical therapy for hydrocephalus: a comprehensive and critical review
.
Fluids Barriers CNS
.
2016
;
13
:
3
. .
61.
Taveira
KV
,
Carraro
KT
,
Catalão
CH
,
Lopes
LS
.
Morphological and morphometric analysis of the hippocampus in wistar rats with experimental hydrocephalus
.
Pediatr Neurosurg
.
2012
;
48
(
3
):
163
7
. .
62.
Castejón
OJ
.
Synaptic plasticity and synaptic degeneration in human congenital hydrocephalus
.
J Pediatr Neurol
.
2006
;
6
:
99
107
.
63.
Ding
Y
,
McAllister
JP
,
Yao
B
,
Yan
N
,
Canady
AI
.
Axonal damage associated with enlargement of ventricles during hydrocephalus: a silver impregnation study
.
Neurol Res
.
1999
;
23
(
6
):
581
7
. .
64.
Kriebel
RM
,
Shah
AB
,
McAllister
JP
 II
.
The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus
.
Exp Neurol
.
1993
;
119
(
1
):
89
98
. .
65.
McAllister
JP
 II
,
Maugans
TA
,
Shah
MV
,
Truex
RC
.
Neuronal effects of experimentally induced hydrocephalus in newborn rats
.
J Neurosurg
.
1985
;
63
(
5
):
776
83
. .
66.
Hasan
M
,
Glees
P
.
The fine structure of human cerebral perivascular pericytes and juxtavascular phagocyte: their possible role in hydrocephalic edema resolution
.
J Hirnforschwig
.
1990
;
2
:
237
49
. .
67.
Glees
P
,
Voth
D
.
Clinical and ultrastructural observations of maturing human frontal cortex. Part I (Biopsy material of hydrocephalic infants)
.
Neurosurg Rev
.
1998
;
11
(
3–4
):
273
8
.
68.
Castejón
OJ
.
Morphopathological changes of dendrites in the edematous human cerebral cortex
.
J Neurol
.
2018
;(
1
):
IJNANS-105
.
69.
Witelson
SF
,
Glezer
II
,
Kigar
DL
.
Women have greater density of neurons in posterior temporal cortex
.
J Neurosci
.
1995 15
;
15
(
5 Pt 1
):
3418
28
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.