Aortic stiffness increases with age and is a robust predictor of cerebrovascular events and cognitive decline including Alzheimer’s disease and other forms of dementia. Recent clinical studies have investigated the association between proximal aortic stiffness and pulsatile energy transmission that has deleterious effects on the cerebrovascular network in order to identify potential therapeutic targets. Aging causes disproportionate stiffening of the aorta compared with the carotid arteries, reducing protective impedance mismatches at their interface, increasing the transmission of destructive pulsatile pressure and energy to the cerebral circulation, and leading to cerebral small vessel disease. Thus, aortic stiffening and high-flow pulsatility are associated with alterations in the microvasculature of the brain, vascular endothelial dysfunction, and white matter damage, which contribute to impaired memory function with advancing age. Previous studies have also shown that silent lacunar infarcts and white matter hyperintensities are strongly associated with arterial stiffness. More and more evidence suggests that vascular etiologies, including aortic stiffness, impedance match, and microvascular damage, are associated with cognitive impairment and the pathogenesis of dementia. The measurement of arterial flow and pressure can help understand pulsatile hemodynamics and its impact on vital organs. Interventions that reduce aortic stiffness, such as improvement of the living environment, management of risk factors, and innovation and development of novel drugs, may reduce the risk for dementia.

The number of subjects with dementia is growing as the population ages [1]. Cardiovascular (CV) risk factors, including arterial stiffness, are associated with various types of dementia and represent potentially modifiable intervention targets [1]. Vascular dysfunction has been demonstrated to manifest together with other disease markers, such as accumulation of β-amyloid plaques and tau protein tangles common to Alzheimer’s disease [2]. Evidence also showed that pressure and flow pulsatility in the macrocirculation and microcirculation are associated with microvascular damage in the high-flow brain and kidneys [3]. Small vessel disease and white matter damage associated with advanced aortic stiffness contribute to impaired memory with age.

To slow down aging-associated target organ damage and CV complications, early vascular aging (EVA) [4] and supernormal vascular aging (SUPERNOVA) [5] have been proposed to better understand the process of vascular aging and provide the opportunity to discover the determinants of arterial stiffness and corresponding preventive and treatment targets. In this review, we will address the concepts of EVA and SUPERNOVA and the consequence of pulsatile hemodynamics and arterial stiffening on target organ damage.

EVA and SUPERNOVA are vascular aging phenotypes [5]. By calculating the so-called delta age, which is the chronological age subtracted by vascular age, we can classify subjects into different phenotypes of vascular aging. The younger vascular age compared to real chronological age is more likely to be SUPERNOVA. On the contrary, the older vascular age (negative delta age) is more likely to be EVA [4]. The top and bottom 10% of delta ages have been used to define EVA and SUPERNOVA, respectively [5].

One could estimate vascular age [6] with these three methods: carotid-femoral pulse wave velocity (cf-PWV) alone, cf-PWV together with age and blood pressure (BP) (age- and BP-stratified cf-PWV), and cf-PWV plus CV risk factors and treatments. The combination of the cf-PWV and CV risk factors may be more suitable for calculating vascular age in populations with various CV risk factor burdens.

In a study published in hypertension, a regression equation was constructed by using cf-PWV and CV risk factors. In the equation, cf-PWV, CV risk factors, and treatments were independent variables, and age was a dependent variable. Delta age is the chronological age subtracted by vascular age, as mentioned earlier. In the validation cohort, EVA had a higher risk of CV events, with a hazard ratio of 2.61 (95% confident interval [CI]: 1.50–4.53) compared with SUPERNOVA 0.61 (95% CI: 0.42–0.87) [7].

In the past, we only used pressure or flow to evaluate the influence of circulatory arterial waves on vital organs [8]. However, it might be the energy that provides the real and more important effects on systemic circulation. The power is the product of pressure and flow waveform. By integrating the power over time, we can derive the energy. Previous evidence had supported the concept that pulsatile power is a more sensitive and accurate measure for excessive pulsatility transmission to the brain compared to conventional pressure or flow pulsatility indices alone [9].

Different aspects of arterial hemodynamics are observed including steady and pulsatile hemodynamics. For steady flow, we can use mean BP to describe the arterial pressure, which is determined by cardiac output and total peripheral resistance. The arterial pulse is generated by the left ventricle. During the transmission of the arterial pulse in the systolic phase, the large arteries expand to store the pulse energy so that the blood flow can sustain during the diastolic phase. This property of arterial compliance is analogous to that of a Windkessel chamber. The arterial system in human youth is delicately designed for the role of receiving jets of blood from the left ventricle and allocating this as a steady flow through peripheral capillaries. Central to such design is the “accommodation” of the heart to the arterial tree; this minimizes the “tidal wave” effect from aortic pressure fluctuations and confines flow pulsations to the larger arteries [10]. With aging, repetitive pulsations (around 30 million/year) cause exhaustion and fracture of elastin lamellae of central arteries, resulting in stiffening and dilatation, so that reflections return earlier to the heart; as a consequence, aortic systolic pressure rises, diastolic pressure falls, and pulsations of flow extend further into smaller vessels of vasodilated organs, notably the brain [11] and kidney [12]. Stiffening leads to increased left ventricular load with hypertrophy, an increased risk of new-onset atrial fibrillation [13], increased myocardial oxygen demand [14], decreased capacity for myocardial perfusion as pulse pressure widens and diastolic BP decreases [15], and increased stresses on small arterial vessels, particularly of the brain and kidney. Clinical manifestations are a result of left ventricular diastolic dysfunction [16] with dyspnea, predisposition to angina, heart failure [17, 18], and small vessel degeneration in the brain and the kidney with resultant intellectual deterioration and renal failure. While aortic stiffening is the principal cause of CV disease [19] in aged persons who escape atherosclerotic complications, it is not a therapeutic target currently. The principal available treatment target is the smooth muscle in distributing arteries, whose relaxation has caused a substantial reduction in the magnitude of wave reflection. Such relaxation can be achieved through regular exercise and the use of vasodilating drugs for the management of hypertension and cardiac failure.

On the other hand, the arterial pulse wave is reflected at sites such as bifurcations, narrowing of arteries, or change of impedance. Both arterial compliance and wave reflections can influence the shape of the arterial pressure waveforms. BP is the pressure exerted by circulating blood upon the walls of blood vessels and determined by several physical factors, including rate of pumping, blood volume, resistance, arterial stiffness, and arterial wave reflections. The BP is usually measured at a person’s upper arm, i.e., the brachial artery pressure. It has been recognized that BP at the brachial artery is different from the pressure at the central aorta, mainly due to the phenomenon of pressure amplification. Although current diagnosis and management of hypertension are based on the measurement of brachial BP, it has been a long debate whether central BP or individual components of BP are clinically more useful than systolic BP [20, 21].

Dementia and cognitive decline have become major health care concerns, especially in aging populations around the world [22]. There have been many risk factors implicated in the pathophysiology of cognitive decline. Among them, vascular aging and arterial stiffness have been proposed as important factors contributing to dementia [23-25].

Central hemodynamics plays a key role in understanding brain damage in hypertension because arterial stiffening is a major determinant of elevated central BP and high central pulsatility is a mechanical factor for brain tissue damage [26, 27], cognitive impairment [28], and cerebral small vessel disease, which included recent small subcortical infarcts, white matter hyperintensity, lacunae, microbleeds, and perivascular space [29]. It has been shown that both increased arterial stiffness and central BP are predictive of stroke [30] and the functional outcome in patients after ischemic stroke [31]. Previous studies also showed that the mechanics and remodeling of an extracranial large artery (common carotid artery) are representative of wall damage of an intracranial large artery [32]. However, whether antihypertensive treatment targeted to reduce aortic stiffness and central BP could prevent stroke, white matter lesions, and cognitive decline remains to be determined.

It has also been suggested that EVA could increase carotid pressure and flow pulsatility due to decreased wave reflection at the aorta-carotid interface, which then causes microvascular damage and impairs vasomotor reactivity and further microvascular and tissue damage [33]. Pulse wave encephalopathy refers to brain tissue damage in response to an increased central artery. An increased aortic and carotid artery stiffness leads to higher arterial pulsatility and higher transmission of pulsatile energy into cerebral arterioles. Aortic stiffness is also associated with an increased risk of ischemic stroke through atherosclerosis [34], the risk for plaque rupture [35], reversal diastolic flow [36], increased myogenic tone, and limited autoregulation of cerebral blood flow [37]. A strong body of evidence supports the association between vascular dementia and Alzheimer’s disease with hemodynamic abnormalities [1, 38]. It has been shown that people developing high BP in the middle of life have a much greater likelihood of developing vascular dementia [39] and cognitive impairment [40] in later life. In our previous study [41], we have shown that higher BP and lower carotid flow velocity were associated with lower brain volume and a higher risk of the cerebral small vessel. Furthermore, in prospective design study [8], we have clearly revealed that the carotid flow pulsatility index, combined with central systolic BP, was positively associated with stroke incidence. In each stratum of central SBP, high carotid flow pulsatility was associated with a higher incidence of stroke. Moreover, cf-PWV, the biomarker of vascular stiffness, instead of augmentation index or pulse pressure, was consistently associated with an earlier microstructural injury before white matter hyperintensities and regional earlier brain atrophy in younger individuals, suggesting that the initial and continuous brain damage related to arterial stiffness begins in or precede midlife [42].

The concept of impedance mismatch has been proposed to illustrate the mechanistic linkage between vascular aging and target organ damage [43-45]. Younger, healthy subjects generally have a highly compliant aorta and relatively stiff muscular arteries, which act like a gate and create a discontinuity of impedance to pulsatile flow at the transition between the aorta and first-generation branch arteries. This impedance mismatch reflects a portion of the pulsatile energy saved in the forward-traveling wave, restricting its transmission into the peripheral vasculature. Beyond midlife, the impedance of the aorta increases disproportionately to that of the muscular arteries, leading to impedance matching and a reduction in wave reflection through irreversible fragmentation of elastic fibers, contributing to deposition and progressive engagement of much stiffer collagen fibers within the wall, ultimately to the progressive stiffening of the proximal aorta. The proximal aorta is susceptible to earlier deterioration than peripheral arteries since the proximal thoracic aorta bears the force of the pulsatile strain directly from cardiac ejection and stiffening of the wall of the aorta. The vascular aging process results in higher central pulse pressure, characteristic impedance, cf-PWV, altered timing of the reflected wave, and reduced proximal wave reflection [46]. Such change diminishes a protective mechanism that normally buffers the peripheral microcirculation from excessive pulsatility. The loss of the natural barrier enables the pulse waves can easily enter our brain and cause damage [44]. Moreover, in response to excessive pressure and flow pulsatility, the microvessels constrict to protect the microcirculation but also result in increased microvascular resistance, reduced blood flow [47, 48], and reduced microvascular reactivity in response to ischemic stress [49] and labile BP caused by stiff arteries [50]. Thus, the cumulative sequelae of elevated aortic stiffness and impedance matching, especially for the brain, characterized by high-flow, low microvascular impedance, and vulnerability to pressure and flow pulsatility [33], manifests as white matter hyperintensities, tissue atrophy, and cognitive impairment and dementia [51]. We summarized the process from impedance mismatch to cognitive impairment, mediated by aging and aortic stiffness in Figure 1.

Fig. 1.

The conceptual process from impedance mismatch to cognitive impairment and neurological disease, mediated by aging and aortic stiffness.

Fig. 1.

The conceptual process from impedance mismatch to cognitive impairment and neurological disease, mediated by aging and aortic stiffness.

Close modal

However, some have contemplated that since the aorta-carotid bifurcation is with a reflection coefficient of 0–15% and relatively well matched, any effect of local wave reflection on transmitted power at the junction is insignificant, with 97% and 100% of incident power conveyed [52]. Moreover, transmitted pulsatile pressure increases with bifurcation reflection coefficients, which should be deleterious in terms of downstream organ function [53]. Others have reported that bifurcations in the arterial system are usually impedance matched in the forward, instead of the backward direction, optimally transmitting forward hydraulic power while causing backward-traveling power to be stuck in daughter arteries by reflection [54, 55]. Subsequently, Haidar et al. had assessed this controversial issue with aortic flow, carotid pressure, flow and hydraulic power, brain magnetic resonance images, and cognitive scores in AGES-Reykjavik study [56] by enrolling 668 subjects without history of stroke, transient ischemic attack, or dementia. Higher carotid flow pulsatility was associated with lower white matter volume and memory scores. Marked asymmetry of characteristic impedances at aorta-branch artery bifurcations reduces amplification of pressure and the absolute and relative pulsatility of transmitted flow and hydraulic power into branch arteries, which protects the downstream local microcirculation from pulsatile damage [57].

The concept of EVA and SUPERNOVA is proposed to better understand the process of vascular aging and develop corresponding preventive and treatment targets. EVA and SUPERNOVA can be defined by calculating vascular age and the corresponding delta age. In EVA subjects, with advanced proximal aortic stiffness and resultant eroded aortic impedance mismatch, the excessive pulsatile energy is transmitted across the aorta-carotid interface into the carotid artery and associates with increased carotid pulsatile energy and reduced cognitive function. The measurement of arterial flow and pressure can help better understand pulsatile hemodynamics and its impact on vital organs.

The authors have no conflicts of interest to declare.

Grants from the Ministry of Health and Welfare (MOHW104-TDU-B-211-113-003, MOHW106-TDU-B-211-113001), an intramural grant from National Yang Ming Chiao Tung University (E107F-M01-0501), and the Ministry of Science and Technology (MOST 106-2314-B-075 -051 -MY3, MOST 109-2314-B-010-061 -). The funding sources are not involved in the manuscript preparation.

Wei-Ting Wang, Wei-Lun Chang, and Hao-Min Cheng contributed to the concept and design of this review and critical revision of the manuscript for important intellectual content and read and approved the final version of the manuscript. Wei-Ting Wang drafted the preliminary manuscript.

1.
Gorelick
PB
,
Scuteri
A
,
Black
SE
,
Decarli
C
,
Greenberg
SM
,
Iadecola
C
,
Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association
.
Stroke
.
2011 Sep
;
42
(
9
):
2672
713
. .
2.
Iadecola
C
.
The pathobiology of vascular dementia
.
Neuron
.
2013 Nov 20
;
80
(
4
):
844
66
. .
3.
Climie
RED
,
Picone
DS
,
Blackwood
S
,
Keel
SE
,
Qasem
A
,
Rattigan
S
,
Pulsatile interaction between the macro-vasculature and micro-vasculature: proof-of-concept among patients with type 2 diabetes
.
Eur J Appl Physiol
.
2018 Nov
;
118
(
11
):
2455
63
. .
4.
Nilsson
PM
,
Boutouyrie
P
,
Laurent
S
.
Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention
.
Hypertension
.
2009 Jul
;
54
(
1
):
3
10
. .
5.
Laurent
S
,
Boutouyrie
P
,
Cunha
PG
,
Lacolley
P
,
Nilsson
PM
.
Concept of extremes in vascular aging
.
Hypertension
.
2019 Aug
;
74
(
2
):
218
28
. .
6.
Redheuil
A
,
Kachenoura
N
,
Bollache
E
,
Yu
WC
,
Opdahl
A
,
Decesare
A
,
Left ventricular and proximal aorta coupling in magnetic resonance imaging: aging together?
Am J Physiol Heart Circ Physiol
.
2019 Aug 1
;
317
(
2
):
H300
07
. .
7.
Bruno
RM
,
Nilsson
PM
,
Engstrom
G
,
Wadstrom
BN
,
Empana
JP
,
Boutouyrie
P
,
Early and supernormal vascular aging: clinical characteristics and association with incident cardiovascular events
.
Hypertension
.
2020 Nov
;
76
(
5
):
1616
24
. .
8.
Chuang
SY
,
Cheng
HM
,
Bai
CH
,
Yeh
WT
,
Chen
JR
,
Pan
WH
.
Blood pressure, carotid flow pulsatility, and the risk of stroke: a community-based study
.
Stroke
.
2016 Sep
;
47
(
9
):
2262
8
. .
9.
Aghilinejad
A
,
Amlani
F
,
King
KS
,
Pahlevan
NM
.
Dynamic effects of aortic arch stiffening on pulsatile energy transmission to cerebral vasculature as A determinant of brain-heart coupling
.
Sci Rep
.
2020 May 29
;
10
(
1
):
8784
. .
10.
O'Rourke
MF
,
Hashimoto
J
.
Mechanical factors in arterial aging: a clinical perspective
.
J Am Coll Cardiol
.
2007 Jul 3
;
50
(
1
):
1
13
. .
11.
Henskens
LH
,
Kroon
AA
,
van Oostenbrugge
RJ
,
Gronenschild
EH
,
Fuss-Lejeune
MM
,
Hofman
PA
,
Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients
.
Hypertension
.
2008 Dec
;
52
(
6
):
1120
6
. .
12.
Foudi
N
,
Palayer
M
,
Briet
M
,
Garnier
AS
.
Arterial remodelling in chronic kidney disease: impact of uraemic toxins and new pharmacological approaches
.
J Clin Med
.
2021 Aug 25
;
10
(
17
):
3803
. .
13.
Mitchell
GF
,
Vasan
RS
,
Keyes
MJ
,
Parise
H
,
Wang
TJ
,
Larson
MG
,
Pulse pressure and risk of new-onset atrial fibrillation
.
JAMA
.
2007 Feb 21
;
297
(
7
):
709
15
. .
14.
Kelly
RP
,
Tunin
R
,
Kass
DA
.
Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle
.
Circ Res
.
1992 Sep
;
71
(
3
):
490
502
. .
15.
Kass
DA
,
Saeki
A
,
Tunin
RS
,
Recchia
FA
.
Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion
.
Circulation
.
1996 Apr 15
;
93
(
8
):
1533
41
. .
16.
Russo
C
,
Jin
Z
,
Palmieri
V
,
Homma
S
,
Rundek
T
,
Elkind
MSV
,
Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function
.
Hypertension
.
2012 Aug
;
60
(
2
):
362
8
. .
17.
Kawaguchi
M
,
Hay
I
,
Fetics
B
,
Kass
DA
.
Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations
.
Circulation
.
2003 Feb 11
;
107
(
5
):
714
20
. .
18.
Weber
T
,
Wassertheurer
S
,
O’Rourke
MF
,
Haiden
A
,
Zweiker
R
,
Rammer
M
,
Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction
.
J Am Coll Cardiol
.
2013 May 7
;
61
(
18
):
1874
83
. .
19.
van Popele
NM
,
Grobbee
DE
,
Bots
ML
,
Asmar
R
,
Topouchian
J
,
Reneman
RS
,
Association between arterial stiffness and atherosclerosis: the Rotterdam Study
.
Stroke
.
2001 Feb
;
32
(
2
):
454
60
. .
20.
Huang
QF
,
Aparicio
LS
,
Thijs
L
,
Wei
FF
,
Melgarejo
JD
,
Cheng
YB
,
Cardiovascular end points and mortality are not closer associated with central than peripheral pulsatile blood pressure components
.
Hypertension
.
2020 Aug
;
76
(
2
):
350
8
. .
21.
Cheng
YB
,
Thijs
L
,
Aparicio
LS
,
Huang
QF
,
Wei
FF
,
Yu
YL
,
Risk stratification by cross-classification of central and brachial systolic blood pressure
.
Hypertension
.
2022 Mar 4
;
79
(
5
):
1101
11
. .
22.
GBD 2019 Dementia Forecasting Collaborators
.
Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019
.
Lancet Public Health
.
2022 Feb
;
7
(
2
):
e105
e125
. .
23.
Saji
N
,
Toba
K
,
Sakurai
T
.
Cerebral small vessel disease and arterial stiffness: tsunami effect in the brain?
Pulse
.
2016 Apr
;
3
(
3–4
):
182
9
. .
24.
Hughes
TM
,
Wagenknecht
LE
,
Craft
S
,
Mintz
A
,
Heiss
G
,
Palta
P
,
Arterial stiffness and dementia pathology: atherosclerosis risk in communities (ARIC)-PET study
.
Neurology
.
2018 Apr 3
;
90
(
14
):
e1248
56
. .
25.
Cooper
LL
,
O’Donnell
A
,
Beiser
AS
,
Thibault
EG
,
Sanchez
JS
,
Benjamin
EJ
,
Association of aortic stiffness and pressure pulsatility with global amyloid-beta and regional tau burden among framingham heart study participants without dementia
.
JAMA Neurol
.
2022 Jul 1
;
79
(
7
):
710
9
. .
26.
Poels
MMF
,
Zaccai
K
,
Verwoert
GC
,
Vernooij
MW
,
Hofman
A
,
van der Lugt
A
,
Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study
.
Stroke
.
2012 Oct
;
43
(
10
):
2637
42
. .
27.
Wei
J
,
Palta
P
,
Meyer
ML
,
Kucharska-Newton
A
,
Pence
BW
,
Aiello
AE
,
Aortic stiffness and white matter microstructural integrity assessed by diffusion tensor imaging: the ARIC-NCS
.
J Am Heart Assoc
.
2020 Mar 17
;
9
(
6
):
e014868
. .
28.
Pantoni
L
.
Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges
.
Lancet Neurol
.
2010 Jul
;
9
(
7
):
689
701
. .
29.
Wardlaw
JM
,
Smith
EE
,
Biessels
GJ
,
Cordonnier
C
,
Fazekas
F
,
Frayne
R
,
Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
.
Lancet Neurol
.
2013 Aug
;
12
(
8
):
822
38
. .
30.
Saji
N
,
Kimura
K
,
Kawarai
T
,
Shimizu
H
,
Kita
Y
.
Arterial stiffness and progressive neurological deficit in patients with acute deep subcortical infarction
.
Stroke
.
2012 Nov
;
43
(
11
):
3088
90
. .
31.
Gasecki
D
,
Rojek
A
,
Kwarciany
M
,
Kubach
M
,
Boutouyrie
P
,
Nyka
W
,
Aortic stiffness predicts functional outcome in patients after ischemic stroke
.
Stroke
.
2012 Feb
;
43
(
2
):
543
4
. .
32.
Laurent
S
,
Boutouyrie
P
.
The structural factor of hypertension: large and small artery alterations
.
Circ Res
.
2015 Mar 13
;
116
(
6
):
1007
21
. .
33.
Mitchell
GF
.
Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage
.
J Appl Physiol
.
2008 Nov
;
105
(
5
):
1652
60
. .
34.
Wilkinson
IB
,
McEniery
CM
,
Cockcroft
JR
.
Arteriosclerosis and atherosclerosis: guilty by association
.
Hypertension
.
2009 Dec
;
54
(
6
):
1213
5
. .
35.
Lovett
JK
,
Howard
SC
,
Rothwell
PM
.
Pulse pressure is independently associated with carotid plaque ulceration
.
J Hypertens
.
2003 Sep
;
21
(
9
):
1669
76
. .
36.
Hashimoto
J
,
Ito
S
.
Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta: potential implication for retrograde embolic stroke in hypertension
.
Hypertension
.
2013 Sep
;
62
(
3
):
542
9
. .
37.
Fernando
MS
,
Simpson
JE
,
Matthews
F
,
Brayne
C
,
Lewis
CE
,
Barber
R
,
White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury
.
Stroke
.
2006 Jun
;
37
(
6
):
1391
8
. .
38.
Ninomiya
T
,
Ohara
T
,
Hirakawa
Y
,
Yoshida
D
,
Doi
Y
,
Hata
J
,
Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study
.
Hypertension
.
2011 Jul
;
58
(
1
):
22
8
. .
39.
Shokouhi
M
,
Qiu
D
,
Samman Tahhan
A
,
Quyyumi
AA
,
Hajjar
I
.
Differential associations of diastolic and systolic pressures with cerebral measures in older individuals with mild cognitive impairment
.
Am J Hypertens
.
2018 Nov 13
;
31
(
12
):
1268
77
. .
40.
Vasan
RS
,
Pan
S
,
Xanthakis
V
,
Beiser
A
,
Larson
MG
,
Seshadri
S
,
Arterial stiffness and long-term risk of health outcomes: the framingham heart study
.
Hypertension
.
2022 May
;
79
(
5
):
1045
56
. .
41.
Chuang
SY
,
Wang
PN
,
Chen
LK
,
Chou
KH
,
Chung
CP
,
Chen
CH
,
Associations of blood pressure and carotid flow velocity with brain volume and cerebral small vessel disease in a community-based population
.
Transl Stroke Res
.
2021 Apr
;
12
(
2
):
248
58
. .
42.
Maillard
P
,
Mitchell
GF
,
Himali
JJ
,
Beiser
A
,
Tsao
CW
,
Pase
MP
,
Effects of arterial stiffness on brain integrity in young adults from the framingham heart study
.
Stroke
.
2016 Apr
;
47
(
4
):
1030
6
. .
43.
Cooper
LL
,
Mitchell
GF
.
Aortic stiffness, cerebrovascular dysfunction, and memory
.
Pulse
.
2016 Sep
;
4
(
2–3
):
69
77
. .
44.
Mitchell
GF
,
van Buchem
MA
,
Sigurdsson
S
,
Gotal
JD
,
Jonsdottir
MK
,
Kjartansson
O
,
Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility–Reykjavik study
.
Brain
.
2011 Nov
;
134
(
11
):
3398
407
. .
45.
de Roos
A
,
van der Grond
J
,
Mitchell
G
,
Westenberg
J
.
Magnetic resonance imaging of cardiovascular function and the brain: is dementia a cardiovascular-driven disease?
Circulation
.
2017 May 30
;
135
(
22
):
2178
95
. .
46.
Mitchell
GF
,
Wang
N
,
Palmisano
JN
,
Larson
MG
,
Hamburg
NM
,
Vita
JA
,
Hemodynamic correlates of blood pressure across the adult age spectrum: noninvasive evaluation in the Framingham Heart Study
.
Circulation
.
2010 Oct 5
;
122
(
14
):
1379
86
. .
47.
Williamson
GA
,
Loutzenhiser
R
,
Wang
X
,
Griffin
K
,
Bidani
AK
.
Systolic and mean blood pressures and afferent arteriolar myogenic response dynamics: a modeling approach
.
Am J Physiol Regul Integr Comp Physiol
.
2008 Nov
;
295
(
5
):
R1502
11
. .
48.
Loutzenhiser
R
,
Bidani
A
,
Chilton
L
.
Renal myogenic response: kinetic attributes and physiological role
.
Circ Res
.
2002 Jun 28
;
90
(
12
):
1316
24
. .
49.
Mitchell
GF
,
Vita
JA
,
Larson
MG
,
Parise
H
,
Keyes
MJ
,
Warner
E
,
Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study
.
Circulation
.
2005 Dec 13
;
112
(
24
):
3722
8
. .
50.
Schillaci
G
,
Bilo
G
,
Pucci
G
,
Laurent
S
,
Macquin-Mavier
I
,
Boutouyrie
P
,
Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases
.
Hypertension
.
2012 Aug
;
60
(
2
):
369
77
. .
51.
Townsend
RR
,
Wilkinson
IB
,
Schiffrin
EL
,
Avolio
AP
,
Chirinos
JA
,
Cockcroft
JR
,
Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American heart association
.
Hypertension
.
2015 Sep
;
66
(
3
):
698
722
. .
52.
Phan
TS
,
Li
JKJ
,
Segers
P
,
Reddy-Koppula
M
,
Akers
SR
,
Kuna
ST
,
Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites
.
J Am Heart Assoc
.
2016 Aug 29
;
5
(
9
):
e003733
. .
53.
Kondiboyina
A
,
Smolich
JJ
,
Cheung
MMH
,
Westerhof
BE
,
Mynard
JP
.
Conduit arterial wave reflection promotes pressure transmission but impedes hydraulic energy transmission to the microvasculature
.
Am J Physiol Heart Circ Physiol
.
2020 Jul 1
;
319
(
1
):
H66
H75
. .
54.
Baksi
AJ
,
Davies
JE
,
Hadjiloizou
N
,
Baruah
R
,
Unsworth
B
,
Foale
RA
,
Attenuation of reflected waves in man during retrograde propagation from femoral artery to proximal aorta
.
Int J Cardiol
.
2016 Jan 1
;
202
:
441
5
. .
55.
Davies
JE
,
Alastruey
J
,
Francis
DP
,
Hadjiloizou
N
,
Whinnett
ZI
,
Manisty
CH
,
Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta
.
Hypertension
.
2012 Sep
;
60
(
3
):
778
85
. .
56.
Harris
TB
,
Launer
LJ
,
Eiriksdottir
G
,
Kjartansson
O
,
Jonsson
PV
,
Sigurdsson
G
,
Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics
.
Am J Epidemiol
.
2007 May 1
;
165
(
9
):
1076
87
. .
57.
Haidar
MA
,
van Buchem
MA
,
Sigurdsson
S
,
Gotal
JD
,
Gudnason
V
,
Launer
LJ
,
Wave reflection at the origin of a first-generation branch artery and target organ protection: the AGES-Reykjavik study
.
Hypertension
.
2021 Apr
;
77
(
4
):
1169
77
. .
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.