
 Review 

 Public Health Genomics 2017;20:274–285 

 Metabolomics in Sepsis and Its Impact on 
Public Health 

 Nikolaos Evangelatos    a, b     Pia Bauer    a     Matthias Reumann    b, c     

Kapaettu Satyamoorthy    d     Hans Lehrach    e     Angela Brand    b, f, g      

  a    Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus 
Medical University,  Nuremberg ,  Germany ;  b    UNU-MERIT (Maastricht Economic and Social Research Institute 
on Innovation and Technology), Maastricht University,  Maastricht ,  The Netherlands ;  c    IBM Research – Zurich, 
 Rueschlikon ,  Switzerland ;  d    School of Life Sciences, Manipal University, Planetarium Complex,  Manipal ,  India ; 
 e    Max Planck Institute for Molecular Genetics,  Berlin ,  Germany ;  f    Public Health Genomics, Department of 
International Health, Maastricht University,  Maastricht ,  The Netherlands ;  g    Manipal University, Madhav Nagar, 
 Manipal ,  India  

 Received: September 25, 2017 
 Accepted after revision: December 16, 2017 
Published online: January 19, 2018

 Nikolaos Evangelatos 
 Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and 
Sleep Medicine, Paracelsus Medical University,   Professor Ernst-Nathan-Strasse 1 
 DE–90419 Nuremberg (Germany) 
 E-Mail evangelatos   @   merit.unu.edu 

 © 2018 S. Karger AG, Basel 

E-Mail karger@karger.com
www.karger.com/phg

 DOI: 10.1159/000486362 

 Keywords 

 Commons arrangements · Free/libre open source software · 
Metabolomics · Public health · Sepsis 

 Abstract 

 Sepsis, with its often devastating consequences for patients 
and their families, remains a major public health concern 
that poses an increasing financial burden. Early resuscitation 
together with the elucidation of the biological pathways and 
pathophysiological mechanisms with the use of “-omics” 
technologies have started changing the clinical and research 
landscape in sepsis. Metabolomics (i.e., the study of the me-
tabolome), an “-omics” technology further down in the 
“-omics” cascade between the genome and the phenome, 
could be particularly fruitful in sepsis research with the po-
tential to alter the clinical practice. Apart from its benefit for 
the individual patient, metabolomics has an impact on pub-
lic health that extends beyond its applications in medicine. 
In this review, we present recent developments in metabo-
lomics research in sepsis, with a focus on pneumonia, and we 
discuss the impact of metabolomics on public health, with a 
focus on free/libre open source software.  

 © 2018 S. Karger AG, Basel  

  Introduction 

 Sepsis is a clinical syndrome with substantial hetero-
geneity. As a result, diagnostic definitions are based on 
non-specific criteria being often under revision  [1 ,  2] . In 
pathophysiological terms, sepsis is perhaps best defined 
as the clinical syndrome produced by an exaggerated, un-
controllable immune response to an infection  [3] . Sepsis 
and its more severe forms, such as septic shock, may lead 
to organ dysfunction, organ failure, and death  [4] . Al-
though its mortality has decreased over the last years, 
mainly due to the application of bundled early goal-di-
rected therapy  [5] , sepsis, with its often devastating con-
sequences for patients and their families, remains a major 
public health concern that poses an increasing financial 
burden. Indicatively, a mean intensive care unit (ICU) 
cost per patient of more than USD 27,000 and an average 
length of stay in the ICU and the hospital often extending 
beyond 5 and 20 days, respectively, illustrate the burden 
imposed on the patients, their families, and national 
health care systems worldwide as well as the need for ear-
ly diagnosis and personalized treatment of sepsis  [6–8] .  

 On the other hand, “-omics” technologies have revo-
lutionized our screening and prevention programs, al-
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lowing for early diagnosis, proper treatment, and mini-
mization of costs across almost the whole spectrum of 
diseases. “-omics” are thus widely considered an indis-
pensable, organic part of modern public health  [9 ,  10] . 
Apart from their benefit for the individual patient, 
“-omics” technologies have an impact on public health 
that extends beyond their applications in medicine. Being 
essentially a subspecies of big data, “-omics”, from ge-
nomics and transcriptomics to proteomics and metabo-
lomics, are commonly dependent on free/libre open 
source software (FLOSS), often developed by the re-
searchers themselves, for the analysis and interpretation 
of vast amounts of complex data. To a certain degree, the 
effect of “-omics” on public health is mediated by the ex-
tended use of FLOSS and the formation of commons ar-
rangements within the research community. 

 The application of “-omics” technologies in sepsis re-
search has already started unraveling this highly hetero-
geneous clinical syndrome with the development of new 
diagnostic tools and therapies nowadays relying to a great 
extent on the further elucidation of biological pathways 
with the use of integrated “-omics”  [11] . 

 In this review, we focus on the potential of metabolo-
mics as an “-omics” approach that can shed light on the 
underlying biology and pathophysiological mechanisms 
of sepsis. After a short discussion of other “-omics” ap-
proaches in sepsis and their restrictions, we describe the 
main techniques and methods in metabolomics, focusing 
on the use of FLOSS. We then present recent work in the 
field, focusing on pneumonia, that can help advance our 
knowledge of sepsis biology and pathophysiology. In the 
end, we briefly discuss the impact of metabolomics on 
public health and present challenges for future research 
in this field.  

 The “-omics” Cascade in Sepsis Research 

 Developments in molecular biology opened the road 
from genetics to genomics, with the Human Genome 
Project and the International HapMap Project both 
providing new avenues for advances in the field of bio-
medical sciences and biotechnology  [12, 13] . Studies at 
the level of the genome have disruptively increased our 
knowledge in many areas. Most notably in autoim-
mune diseases, such as Crohn’s disease, but also in dia-
betes mellitus and cardiovascular diseases, genome- and 
exome-wide association studies (GWAS) have led to the 
correlation of certain single-nucleotide polymorphisms 
(SNPs) with certain phenotypes, revealed the existence of 

shared risk loci among entities, highlighted differences in 
genetic susceptibility across ethnic populations, and, with 
pharmacogenomics, even contributed to drug safety and 
efficacy testing  [14–20] . 

 Despite the incontrovertible successes of genomic 
technologies in autoimmune, metabolic, and cardiovas-
cular diseases, genomics research has delivered compara-
tively moderate gains in the elucidation and treatment of 
the septic syndrome. SNP genotyping of several genes re-
lated to lymphocytes, Toll-like receptors, and ligands for 
pathogens’ elements have indeed enriched our knowl-
edge of the biological background of sepsis  [21–25] . How-
ever, the pathophysiological relevance of those findings 
remains unclear and the use of this knowledge in clinical 
practice, with the notable exception of neonatal ICUs, is 
still limited  [26] . One of the reasons for the difficulty to 
put such findings in a pathophysiological context is that 
sepsis, in contrast to autoimmune entities, such as Crohn’s 
disease, is a heterogeneous syndrome, in effect the end of 
numerous, disorganized activated pathways at multiple 
levels between the genome and the phenome. This het-
erogeneity, coupled with the high number of patients re-
quired for a GWAS to identify loci conferring a modest 
risk, exaggerates the difficulties associated with sepsis 
definition and makes the recruitment of patients truly 
challenging  [27] . Furthermore, as the development of 
sepsis requires an insult from a pathogen, the exertion of 
risk allele effects cannot be identified before the host-
pathogen interaction has started. Besides, controls in 
GWAS in sepsis are often healthy subjects who, even if 
they carry the alleles conferring a risk of sepsis develop-
ment, have not undergone the required precipitating 
event (i.e., they are not infected yet). These attributes of 
genomics research in sepsis may result in possible biases 
and perturbation  [28, 29] . In addition, the genomic ap-
proach alone has left many questions unanswered such 
as, for example, what is the role of epigenomics  [30] , 
which genes are being activated during the course of a 
disease, how the host-pathogen interaction changes the 
expression of certain genes  [31, 32] , and which gene prod-
ucts are indeed being produced and modified as a re-
sponse to an insult.  [33] . Studies further down from the 
genome to the phenome, at the level of the epigenome, 
transcriptome, and proteome, have been, to some extent, 
successful in complementing and expanding our knowl-
edge of disease pathophysiology  [34–39] . Nevertheless, as 
transcriptional and translational elements exist in high 
numbers of variants and isoforms and are dynamically 
altered (with unknown time lags) through the interaction 
with the insulting pathogen, the results of transcriptomics 
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and proteomics research in sepsis, though promising, 
need to be confirmed before they are applied at the bed-
side  [40] . 

 The Metabolomics Approach  

 Metabolomics, “the quantitative measurement over 
time of the metabolic responses of an individual or popu-
lation to drug treatment or other intervention” is a prom-
ising area of research, further down in the “-omics” cas-
cade between the genome and the phenome, that could be 
particularly fruitful is sepsis research  [41] . Although, his-
torically, the term metabolomics has not been inter-
changeable with the less frequent “metabonomics,” both 
terms have come to refer to the comprehensive study of 
the metabolites of a living system (i.e., the metabolome), 
either naturally occurring or as a response to a particular 
set of conditions  [42] .  

 Investigation of the metabolome ranges from methods 
relying on pattern recognition, such as metabolic finger-
printing, to quantification methods, such as metabolic 
targeting and metabolic profiling. Institutionalization 
 [43] , a growing number of relevant studies, an increasing 
economic impact  [44] , and a very active community of 
FLOSS users and developers active in metabolomics re-
search are signs of the increasing importance of metabo-
lomics as an “-omics” technology.  

 Being a complex function of intra- and extracellular 
processes and encompassing information from many reg-
ulatory processes (e.g., from epigenetic regulation of tran-
scription to allosteric regulation of proteins), the metabo-
lome provides integrated information further down from 
the genome to the phenome. On the other hand, as already 
mentioned above, sepsis is in effect the result of the com-
plex interactions between the host and the insulting patho-
gen. Sepsis-induced alterations in the genome, transcrip-
tome or proteome are reflected in changes in the concen-
tration of the small molecules and chemicals in biological 
fluids and tissues  [45] . These changes can be accurately 
measured and analyzed, thus providing a readout of the 
fluctuations of metabolites and other intermediate prod-
ucts of metabolism in the setting of an environmental in-
sult, such as a severe infection. Such studies may reveal 
novel biological pathways extending between the genome 
and the phenome and offer opportunities for diagnostic 
and therapeutic interventions. Technical developments in 
the last decade have allowed accurate profiling of diverse 
intra- and extracellular substances, rendering metabolo-
mics “the final piece of the -omics puzzle”  [46] . 

 Although analytical chemistry (“the laboratory”) has 
been an indispensable part of (and to some extent has de-
fined) biomedicine for more than a century  [47] , im-
provements in the sensitivity and specificity of the ana-
lytical techniques used in metabolomics allow for the si-
multaneous measurement of hundreds of metabolites in 
a variety of sample fluids  [48] . More importantly, advanc-
es in the Information and Communication Technology 
(ICT) sector in the last decades (with early implementa-
tion in interpretation of the then rapidly accumulating 
biochemical data)  [49]  allow us to interpret the results in 
biologically meaningful ways  [50] .  

 Specifically in sepsis, metabolomics is a very promis-
ing field of research for a number of reasons. In contrast 
to genomics and proteomics, the impact of environmen-
tal perturbation on the metabolome results in changes 
that are highly dynamic and occur over shorter periods of 
time  [51] . Furthermore, the number of metabolites ap-
pears to be considerably lower than the number of variant 
gene expression profiles and protein isoforms (42,003 
metabolite entries until January 2017)  [52, 53] . Taken to-
gether, these characteristics render metabolomics unique, 
both as a research approach (design of clinical trials for 
the discovery and validation of biomarkers) and as a pow-
erful tool in the clinical practice (real-time monitoring of 
time-dependent metabolite changes). Particularly in crit-
ical illness, the plethora of data derived from metabolo-
mics studies could potentially change the landscape in 
biomarker discovery by enabling disease detection and 
monitoring with the use of not just a single biomarker but 
a compilation of them  [45, 54] . 

 In the following section, we briefly address the me-
tabolomics techniques and methods with an emphasis on 
data analysis and the use of FLOSS.  

 Metabolomics Techniques and Methods 

 Metabolomics techniques provide a “snapshot” of the 
many small molecules (such as nucleotides, amino acids, 
lipids, etc.) that constitute the metabolome. Designing 
experimental studies in metabolomics requires consider-
ation of several issues. Targeted metabolomics, where a 
fixed subset of certain metabolites (sometimes up to 500) 
is studied, is particularly useful in testing a specific hy-
pothesis. The use of internal calibration in targeted ap-
proaches confers measurement accuracy. Conversely, 
untargeted profiling, where all metabolites in a sample are 
measured, is better suited for hypothesis-generating stud-
ies. Identification of novel metabolites and the lack of bias 
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are the main advantages of untargeted metabolomics. As 
far as the analysis of the data derived with each strategy is 
concerned, in general, analysis of untargeted data is often 
more demanding due to detected signals from still un-
identified metabolites. Other important issues include 
the choice of the appropriate population (cell cultures, 
animals, humans, etc.) and sample (fluid, tissue, etc.), the 
decision to analyze intra- or extracellular metabolites, 
and, importantly, statistical considerations. Irrespective-
ly of the above design options, because of the nature and 
variety of the physicochemical properties of small mole-
cules, the methodologies and analytical techniques em-
ployed are usually multiple, with one-dimensional (1-D) 
proton (H) nuclear magnetic resonance (1H-NMR) and 
mass spectroscopy (MS), coupled with multivariate anal-
ysis, being the main analytical platforms  [50] . 

 Nuclear Magnetic Resonance 
 This technique involves the generation of magnetic 

fields with the use of powerful magnets. Briefly, a sample 
in a nuclear magnetic resonance (NMR) glass tube in a 
magnetic field is excited with a radio frequency pulse. Al-
ternation between the lower and higher energy spin states 
of the electrons generates a resonance which is unique for 
every substance, depending on its chemical structure. After 
subtraction of perturbation (e.g., water signals) this sub-
stance-specific NMR response is registered, processed, and 
displayed in the form of a peak across a spectrum. The area 
under the peak represents the relative concentration of the 
respected metabolite compared to an appropriate refer-
ence signal, thus allowing precise quantification. As the 
NMR response is unique for every small molecule, it is pos-
sible to calibrate the magnet in order to reproducibly target 
certain compounds, as in the case of targeted metabolo-
mics. Another main advantage of NMR is that the tech-
nique is non-destructive, thus allowing for retesting if nec-
essary. Furthermore, it requires minimal sample prepara-
tion, is relatively quick, and has a sensitivity that increases 
with the use of more powerful magnets (ranging between 
mM/L and μmol/L)  [55, 56] . However, detection limits and 
quantification unreliability in the area below μmol/L ne-
cessitate the use of more sensitive techniques, such as MS. 

 Mass Spectrometry 
 Identification of metabolites with MS relies on the de-

tection of the mass-to-charge ratio (m/z) and the relative 
intensities of ionized compounds. Briefly, molecules 
bombarded with charged elements are split into frag-
ments separated within an (electro)magnetic field and 
sorted along their m/z ratio. The results are then differ-

entially displayed according to the relative abundances of 
fragments with the same m/z ratios. Liquid chromatogra-
phy or gas chromatography, which improve mass separa-
tion, often precede MS in the setting of metabolomic 
studies.  

 Compared to NMR, MS-based platforms are more la-
borious and more destructive for the sample; however, 
they have a greater sensitivity. In general, the more sensi-
tive MS provides information about the structure of the 
detected compound, whereas the more accurate NMR 
provides certainty and quantification  [46] . 

 Data Analysis and Biological Interpretation 

 The relative advantages and disadvantages of the two 
platforms should be taken into account in the design of 
metabolomic studies and often both approaches are em-
ployed. A common characteristic is that both analytical 
platforms generate vast amounts of multidimensional 
data that need rigorous analysis. Metabolomic data anal-
ysis ranges from platform-specific operations, such as 
data processing, often performed with the use of propri-
etary, built-in software, to platform-independent statisti-
cal analysis and biological data interpretation, where 
FLOSS plays an ever-increasing role. Here, we discuss 
briefly the main considerations regarding metabolomic 
data analysis with an emphasis on the use of FLOSS.  

 Statistical Analysis 
 Due to its amount, complexity, and characteristics 

(many variables for few observations), metabolomic data 
requires the use of multivariate statistical analysis. Multi-
variate methods can be broadly divided into unsuper-
vised tests, such as principal component analysis, rou-
tinely used to identify outliers and detect natural cluster-
ing within the studied data set, and supervised methods, 
such as partial least squares analysis, best suited for the 
construction of predictive models. Results of untargeted 
profiling including detected but still unidentified metab-
olites can also be subjected to statistical analysis as the 
latter uses absolute or relative values (i.e., intensities) 
even if they do not correspond to known spectra. Statisti-
cal analysis is often performed with the use of commercial 
multivariate analysis packages; however, FLOSS packages 
are also available. In essence, and irrespectively of their 
complexity and the tools used for the analysis, the results 
of statistical analysis in metabolomics display associa-
tions between metabolites and certain phenotypes in 
health and disease.  
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 Data Interpretation 
 Significant associations of metabolites with pheno-

types need to be meaningfully aggregated and interpreted 
in order to provide biological insight. Putting associa-
tions in context (usually by accommodating them into a 
certain perceived setting) may be challenging  [57] . It in-
cludes mapping observed changes of known metabolites 
onto biological pathways as well as estimating the com-
parable importance of the various pathways using meth-
ods already employed in other “-omics” approaches, such 
as enrichment analysis. A limitation of pathway mapping 
is the relatively low number of metabolites included in the 
analysis, basically due to the lack of reliable metabolite 
identifiers. Generation of automated annotations  [58]  
and construction and visualization of metabolite net-
works  [59]  attempt to overcome these challenges. Based 
on the observation that metabolites that are functionally 
related also change in a similar manner over time or over 
the course of an event that affects this function, data-driv-
en analysis is another effort to include detected but still 
unidentified metabolites into pathway analysis  [60] .  

 Data interpretation relies largely on free/libre open 
source software platforms that allow for mapping of me-
tabolites onto biological pathways and visualization of 
the constructed networks. This is a common characteris-
tic between metabolomics and the other “-omics” tech-
nologies. In the following paragraphs, we present in brief 
the relationship between metabolomics and FLOSS. 

 Free/Libre Open Source Software 
 Technological developments have led to enormous ad-

vances in metabolomics instrumentation. To gain a sense 
of proportion, the first instrumentation of MS had a mass 
resolving power of 130 whereas nowadays the latter may 
amount 200,000  [61] . The potential of modern instrumen-
tation, which produces vast amounts of complex data, pos-
es a big challenge to our ability to deal with it. Even com-
mercial, instrument-specific, built-in software is not al-
ways capable of taking full advantage of the capacity of the 
hardware. Pioneers in biomedicine (e.g., molecular biolo-
gy, biochemistry, etc.) and bioinformatics, especially in the 
post-World War II period, were often obliged to develop 
their own software in order to make sense of data  [62] . On 
the other hand, management, analysis, and effective ex-
ploitation of such data require collaboration between re-
searchers. Hence, it may be argued that networking and 
sharing of knowledge, in the form of open-source codes, 
has almost been an imperative in the field of big data, such 
as metabolomics. Within this context, the use of FLOSS has 
been an integral part of metabolomics research.  

 There are several issues regarding the use of FLOSS in 
metabolomics. Instrument-specific, built-in software 
saves data in a proprietary format so that export of data 
in open, common formats, even when possible, may lead 
to loss of data. Abandonment and fragmentation of ef-
forts, difficult-to-use interfaces, multiple bugs, and, more 
importantly, a lack of both software validation and tech-
nical support are some of the disadvantages of open-
source platforms as compared to proprietary software. 
On the other hand, FLOSS platforms may have an edge 
over proprietary solutions for a number of reasons. Avail-
ability and accessibility of the source, as well as a very ac-
tive community (mainly consisting of the researchers pri-
marily involved in “-omics” research), allow for open 
scrutiny and timely fixing of bugs, rendering the argu-
ment of a lack of technical support rather obsolete. The 
lack of hidden costs for implementation and learning 
makes FLOSS an attractive choice in terms of budget, thus 
lowering the entry barriers in metabolomics research 
 [61] .  

 Reproducibility of results is a constitutive element of 
science. In the field of metabolomics, results highly de-
pend not only on measurements of events but also on the 
assumptions used and the software and algorithms em-
ployed for their interpretation. As Jonathan Buckheit and 
David Donoho put it, “An article about computational 
science in a scientific publication is not the scholarship 
itself, it is merely advertising of the scholarship. The ac-
tual scholarship is the complete software development 
environment and the complete set of instructions which 
generated the figures”  [63] . Reproducible research refers 
to freely available data and methods used in a research 
article and here FLOSS, with its open algorithms, has a 
place.  

 The relationship of metabolomics with FLOSS also has 
implications for public health, as we will see in the rele-
vant section. However, the impact of metabolomics re-
search on public health in the case of sepsis is primarily 
mediated by its tangible, direct effect on diagnosis and 
treatment. In the following section, we present recent 
work is metabolomics research in sepsis, focusing on 
pneumonia.  

 Metabolomics in Sepsis  

 Lactate, a metabolite formed from pyruvate in the cy-
tosol as part of glycolysis, has been one of the most fre-
quently used biomarkers of tissue hypoxia in sepsis  [5] . 
Current evidence challenges this dominant view and sug-
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gests that lactate metabolism during sepsis is a non-linear, 
complex process that needs to be further investigated  [64, 
65] . Irrespectively of the value of lactate as a biomarker of 
tissue hypo-perfusion, this controversy only underlines 
the dynamic of current research in the field of metabolo-
mics and how the latter could shed light on the complex 
biological pathways underlying the pathophysiology of 
sepsis. 

 Metabolomic studies in sepsis have primarily focused 
on sepsis-associated mortality  [66, 67] . Both NMR and 
MS have been employed in the study of several metabo-
lites in different biological fluids and tissues, mainly 
blood (serum and whole blood), bronchoalveolar fluid, 
and urine, in animal models as well as in humans  [68–70] . 
Study design strategies involve different approaches, 
ranging from targeting certain pathways  [71]  to studying 
metabolite classes and mitochondrial dysfunction  [72, 
73] . 

 Metabolomic profiling of patients with sepsis has iden-
tified a series of different metabolites that consistently 
correlate with increased mortality. Integrated analysis of 
outcomes in a prospective, observational trial of 1,152 
subjects with suspected community-acquired sepsis re-
vealed metabolic derangements with consistently higher 
values of certain metabolites in the group of non-survi-
vors  [66] . Despite this consistency regarding individual 
metabolites, network models developed to predict death 
on the basis of a group of metabolites have implicated dif-
ferent, non-overlapping sets of metabolites. Such discrep-
ancies underline the role of and the challenges for the 
statistical analysis posed by the voluminous, complex 
data produced by the analytical methodology  [74] . On the 
other hand, these results also highlight the potential and 
the difficulties of metabolomics in predicting sepsis mor-
tality  [75] .  

 Sepsis is a time emergency, where survival is reported 
to decrease by 7.6% with every hour of delay in the initia-
tion of therapy  [76] . Especially the delay in the onset of 
the proper antibiotic therapy has been recognized as a 
major risk factor for mortality  [77] . Aggressive, general, 
bundled measures, such as an early start of empiric anti-
biotic therapy, adequate source control, and hemody-
namic and respiratory monitoring and support are cor-
nerstones of sepsis management and essentially reflect 
the fact that sepsis is not a disease but rather a syndrome 
 [5] . Nevertheless, the heterogeneity of the septic syn-
drome should also prompt adjustment of treatment to the 
precipitating factor. This is of particular importance in 
cases of unknown underlying infections, and here me-
tabolomics seems to have a place. A retrospective analysis 

of 406 patients, in which a total of 186 metabolites were 
determined by liquid chromatography tandem MS, iden-
tified specific metabolites that correlated with certain in-
fections and could eventually be used for discrimination 
of the different triggering factors. In this study, the glyc-
erophospholipid lysoPCaC26:   1 identified patients with 
community-acquired pneumonia (CAP) and sepsis (as 
compared to patients with sepsis due to other infections) 
whereas putrescine, a metabolite produced by the break-
down of amino acids, was associated with unfavorable 
outcomes in this particular group of patients  [78] . An-
other recent study used an untargeted approach to study 
the metabolome, in plasma samples, of 142 patients with 
CAP and 97 controls. Global analysis of the metabolome 
identified 13 lipid metabolites that could discriminate be-
tween CAP cases and non-CAP controls, and 2 metabo-
lites that were associated with increased mortality  [79] .  

 CAP remains a dominant cause of hospitalization, 
morbidity, and mortality. Mortality rates among patients 
requiring admission to an ICU exceed 40% in multicenter 
cohort studies, and CAP complicated by sepsis is an 
emergency than needs to be timely recognized and treat-
ed  [80] . Clinicians use severity assessment tools in order 
to stratify patients according to the severity of their dis-
ease. However, these tools have several problems that 
limit their efficacy, such as a compromised validity of 
studies due to poorly selected patients and the use of 
many different end points. Especially relevant for CAP 
and CAP-associated sepsis is that the use of different 
scores may lead to different clinical decisions. The follow-
ing example illustrates the problem with the convention-
al, clinical assessment tools: a 60-year-old patient with 
CAP, a respiratory rate of 26 breaths/min, a blood pres-
sure of 95/65 mm Hg, BUN of 18 mg/dL, and a normal 
mental status is being evaluated in the emergency depart-
ment. According to the validated prognostic model 
CURB65 score (developed for pneumonia), this patient 
has an estimated mortality of 0.6% and could be managed 
on an outpatient basis. When evaluated with the use of 
qSOFA (the newest score for patients with suspected sep-
sis in the emergency department), the same patient has 
sepsis and should be probably transferred to the ICU  [81, 
82] . Notably, the newly developed qSOFA score seems to 
fail validation and “should not replace general early warn-
ing scores when risk-stratifying patients with suspected 
infection”  [83] .  

 Machine learning approaches have also been em-
ployed, complementary to clinical tools, in developing 
predictive models for sepsis; however, reliable diagnostic 
and predictive tools remain elusive  [84] . 
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 From the information above, it is clear that current di-
agnostic tools need to be complemented with faster and 
more accurate methods that take into account the com-
plex interactions between the host and the pathogens. 
The role of metabolomics in this case is illustrated by the 
following examples.  Streptococcus pneumoniae  is the 
most frequent infectious agent across the whole spectrum 
of patients with CAP (outpatients, hospitalized, ICU) 
 [85] , whereas  Staphylococcus aureus  is, together with 
 Pseudomonas aeruginosa , the most frequent isolate in 
cases of hospital-acquired pneumonia (HAP) in ICU 
 [86] . Quantitative metabolomics with the use of NMR in 
urine samples of patients with CAP have revealed a dis-
tinct metabolic profile for pneumococcal pneumonia as 
compared to viruses and other bacterial agents  [87] . Fur-
thermore, targeted metabolomics in urine samples have 
revealed early differences between the metabolic respons-
es induced by  S. pneumoniae  and  S. aureus  in mouse 
models with lung infections  [88] . Nearer to the patient, a 
prospective, cross-sectional cohort study involving 93 pa-
tients used exhaled breath metabolomics for the diagno-
sis of pneumonia in intubated and mechanically venti-
lated patients. Exhaled breath contains gas phase metabo-
lites, called volatile organic compounds, produced by the 
host and the insulting bacteria. Thermal desorption with 
gas chromatography coupled to MS (TD-GC-MS) identi-
fied different sets of volatile organic compounds that dis-
criminated, with moderate accuracy, between ventilated 
patients with CAP and ventilated patients with HAP as 
well as between ventilated patients with pneumonia (CAP 
or HAP) and ventilated patients without pneumonia. In 
this study, 1-propanol, a metabolite, was consistently de-
tected in both patients with pneumonia and patients with 
colonized airways without signs of acute infection. 1-Pro-
panol is a primary alcohol product of many fermentation 
processes. It is also produced by  Escherichia coli , probably 
as a means to prevent the growth of other pathogens. Tak-
en together, these facts suggest a potential role of 1-pro-
panol as a biomarker for bacterial presence and growth 
and should prompt further investigation  [89] . These find-
ings stress the potential of metabolomics as a tool for dis-
ease diagnosis and monitoring in pneumonia and pneu-
monia-associated sepsis that adds value to the current 
practice.  

 The utility of metabolomics in sepsis also lies with the 
identification of metabolites from certain pathways in 
bacteria that could reveal potential antimicrobial targets, 
thus changing not only the diagnostic but also the thera-
peutic landscape  [90] . A recent study used quantitative 
1H-NMR spectroscopy to study the effects of 5 antibiotic 

classes to the metabolic response of  E. coli  cultures. Met-
abolic footprints were class specific when  E. coli  cell cul-
tures were treated with antibiotic agents acting intracel-
lularly. However, the use of antibiotics targeting the cell 
wall produced distinct, antibiotic-class-specific, metabol-
ic responses. Remarkably, the mode of action of 3 differ-
ent antibiotics (treptomycin, tetracycline, and carbenicil-
lin) could be correctly predicted  [91] . The studies out-
lined above illustrate the fact that the therapeutic potential 
of metabolomics in metabolic resuscitation in sepsis is 
gaining recognition  [92 ,  93] . 

 Nevertheless, despite this progress, there are several 
issues that limit the use of metabolomics in clinical prac-
tice. Unfortunately, a series of biomarker candidates have 
failed validation in confirmation studies. Furthermore, in 
a recent study, untargeted metabolic profiling of unre-
lated diseases yielded similar findings among patients 
with different diseases as compared to healthy controls. 
In addition, metabolites that were associated with spe-
cific diseases in this study were found to have already 
been associated with other diseases in the relevant litera-
ture. To overcome these confounding results and to in-
crease the chances of successful validation, researchers 
suggest a design strategy that should also include, apart 
from healthy ones, controls with non-related diseases 
 [94] . Another important limitation is the limited number 
of study participants and the large number of variables. 
With some of the metabolites still unidentified, interpre-
tation and contextualization of results remain a chal-
lenge. The employment of new approaches, such as data-
driven analysis, and the development of appropriate soft-
ware solutions will lead to a better exploitation of the 
current hardware capabilities. Lastly, but equally impor-
tantly, the road between impractical, laborious, and time-
consuming applications, such as MS, and the use of bed-
side sensors to accurately diagnose or exclude pneumonia 
remains long and warrants the necessary technological 
solutions  [95] . 

 Impact on Public Health  

 Being a component of epidemic preparedness and re-
sponse support and a core element of informed public 
health action, “-omics” technologies, in general, have a 
well-known impact on public health  [96] . However, the 
impact of “-omics” research on public health is not lim-
ited to the control of epidemics. In the specific case of 
sepsis-associated metabolomics research, its impact on 
public health is primarily mediated by its effect on disease 
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diagnosis, monitoring, and treatment. Development of 
composite biomarkers for sepsis, understanding of the 
relevant pathophysiological mechanisms, elucidation of 
pathogens’ biological pathways, identification of novel 
antibiotic targets, tailored drug treatments, and therapeu-
tic monitoring are expected to realize personalized medi-
cine, thus increasing survival rates and reducing costs for 
the treatment of patients with sepsis  [97] . 

 It has been argued that personalized medicine is an 
integral component of modern public health  [98] . On the 
other hand, metabolomics has been characterized as a 
driver for personalized medicine in sepsis  [99] . Taken to-
gether with the fact that sepsis, as mentioned above, is a 
global health concern, this underlines the significance of 
metabolomics for public health. More specifically, by 
complementing other “-omics” technologies, employ-
ment of metabolomics has the potential to radically trans-
form the research and clinical landscape in sepsis by en-
abling effective risk stratification and diagnosis  [100] , 
prognosis  [101] , and, with pharmacometabolomics, even 
targeted therapeutic approaches  [102] . 

 However, metabolomics, as is the case with the other 
“-omics” technologies, is a horizontal technology that 
transcends nominal categories, so that developments in 
sepsis-associated metabolomics research may have a 
more general impact on public health. In effect, this 
means that findings of sepsis-related research can be 
transferred to other fields. For example, in an era with 
increasing numbers of antibiotic-resistant pathogens and 
a limited number of novel antibiotic agents, application 
of metabolic fingerprinting could complement our 
knowledge of the mechanism of action of new antibiotic 
agents with implications for drug discovery  [91] . The rel-
evance for public health becomes even more obvious if we 
take into account the multitude of septic infections affect-
ing intensive fish farming (with the danger of the result-
ing epidemics), in an era where seafood is the highest-
value globally traded food commodity  [103] . The same 
holds true for farming, where food metabolomics play an 
ever-increasing role in the diagnosis and treatment of in-
fected livestock  [104] .  

 But the impact of sepsis-associated metabolomics re-
search on public health extends beyond drug discovery 
and personalized medicine as it increases the capacity of 
biomedical research in numerous ways. For example, a 
basic characteristic of “-omics” technologies is the pro-
duction of vast amounts of data that need analysis and 
interpretation. Effective management, analysis, and ex-
ploitation of data require readiness for cooperation 
among researchers as well as other actors, a low level of 

suspiciousness, and the willingness to share information 
with others. FLOSS is a prominent example of this new 
ethos. Due to the complexity and amount of data, re-
searchers working with metabolomics (and other 
“-omics”) are often confronted with the need to custom-
ize the software used for data analysis and interpretation. 
As already mentioned above, FLOSS is an invaluable re-
source that allows for such customization. Researchers 
that develop, use, and freely circulate (free as in speech) 
 [105]  FLOSS for use in metabolomics research are essen-
tially forming a modified commons arrangement (where 
commoners are the researchers/developers of the soft-
ware, the latter is the shared resource, and the operating 
rules are those of the corresponding public license). Such 
commons arrangements transcend conventional nation-
al, academic, and industrial barriers. For example, re-
searchers in a country can make use of FLOSS developed 
elsewhere, modify it according to their needs, and ad-
vance their research. By making it freely available, the 
added value conferred to the software can be used by oth-
ers in an ever-enriching circle with obvious benefits. 
FLOSS, which is arguably an innate characteristic of 
“-omics” technologies, illustrates another aspect of the 
potential of metabolomics as an engine for biomedical in-
novation. In the real world, this potential is realized by the 
formation of arrangements that enable transactions based 
on metabolomic data  [106] .  

 Conclusion and Future Research Challenges 

 In summary, the rapidly growing field of metabolo-
mics has the potential to change the clinical practice in 
sepsis. In contrast to genomics, transriptomics, and pro-
teomics, metabolomics targets a point in the “-omics” 
cascade even closer to the phenome, where possibilities 
(encoded in the genome) have already been materialized. 
Studies in sepsis suggest that metabolomics may lead to 
the discovery of composite biomarkers and contribute to 
the drug development process. Future work could focus 
on pursuing a better stratification of patients (e.g., early 
identification of non-responders, predisposing pheno-
types, etc.) and enabling early recognition of challenging 
diagnoses, such as ventilator-associated pneumonia. To 
this end, employing an integrated, multi-omics approach 
would present a considerable challenge but also a huge 
opportunity for advances in the field. The impact of me-
tabolomics on public health is primarily mediated by its 
effect on sepsis diagnosis, monitoring, and treatment. 
However, its relevance for the bioeconomy as well as the 
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extended use of FLOSS and the resulting formation of 
communities of researchers that cooperate with each oth-
er are also important effects of metabolomics. Here, fu-
ture research should seek to map the landscape, quantify 
these effects, and suggest measures to overcome barriers 
to cooperation.  
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