Every tumour is different. They arise in patients with different genomes, from cells with different epigenetic modifications, and by random processes affecting the genome and/or epigenome of a somatic cell, allowing it to escape the usual controls on its growth. Tumours and patients therefore often respond very differently to the drugs they receive. Cancer precision medicine aims to characterise the tumour (and often also the patient) to be able to predict, with high accuracy, its response to different treatments, with options ranging from the selective characterisation of a few genomic variants considered particularly important to predict the response of the tumour to specific drugs, to deep genome analysis of both tumour and patient, combined with deep transcriptome analysis of the tumour. Here, we compare the expected results of carrying out such analyses at different levels, from different size panels to a comprehensive analysis incorporating both patient and tumour at the DNA and RNA levels. In doing so, we illustrate the additional power gained by this unusually deep analysis strategy, a potential basis for a future precision medicine first strategy in cancer drug therapy. However, this is only a step along the way of increasingly detailed molecular characterisation, which in our view will, in the future, introduce additional molecular characterisation techniques, including systematic analysis of proteins and protein modification states and different types of metabolites in the tumour, systematic analysis of circulating tumour cells and nucleic acids, the use of spatially resolved analysis techniques to address the problem of tumour heterogeneity as well as the deep analyses of the immune system of the patient to, e.g., predict the response of the patient to different types of immunotherapy. Such analyses will generate data sets of even greater complexity, requiring mechanistic modelling approaches to capture enough of the complex situation in the real patient to be able to accurately predict his/her responses to all available therapies.

1.
Easton DF, Pharoah PDP, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, Devilee P, Meindl A, Couch FJ, Southey M, Goldgar DE, Evans DGR, Chenevix-Trench G, Rahman N, Robson M, Domchek SM, Foulkes WD: Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 2015;372:2243-2257.
2.
Gatta G, van der Zwan JM, Casali PG, Siesling S, Dei Tos AP, Kunkler I, Otter R, Licitra L, Mallone S, Tavilla A, Trama A, Capocaccia R; RARECARE working group: Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer 2011;47:2493-2511.
3.
https://www.cancer.org/cancer/cancer-unknown-primary/about/key-statistics.html.
4.
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, Gervais R, Elez-Fernandez ME, Italiano A, Hofheinz RD, Hidalgo M, Chan E, Schuler M, Lasserre SF, Makrutzki M, Sirzen F, Veronese ML, Tabernero J, Baselga J: Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 2015;373:726-736.
5.
Spear BB, Heath-Chiozzi M, Huff J: Clinical application of pharmacogenetics. Trends Mol Med 2001;7:201-204.
6.
Massard C, Michiels S, Ferté C, Le Deley MC, Lacroix L, Hollebecque A, Verlingue L, Ileana E, Rosellini S, Ammari S, Ngo-Camus M, Bahleda R, Gazzah A, Varga A, Postel-Vinay S, Loriot Y, Even C, Breuskin I, Auger N, Job B, De Baere T, Deschamps F, Vielh P, Scoazec JY, Lazar V, Richon C, Ribrag V, Deutsch E, Angevin E, Vassal G, Egger-Mont A, André F, Soria JC: High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 Trial. Cancer Discov 2017, Epub ahead of print.
7.
Von Hoff DD, Stephenson JJ, Rosen P, Loesch DM, Borad MJ, Anthony S, Jameson G, Brown S, Cantafio N, Richards DA, Fitch TR, Wasserman E, Fernandez C, Green S, Sutherland W, Bittner M, Alarcon A, Mallery D, Penny R: Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 2010;28:4877-4883.
8.
Schwaederle M, Zhao M, Lee JJ, Lazar V, Leyland-Jones B, Schilsky RL, Mendelsohn J, Kurzrock R: Association of biomarker-based treatment strategies with response rates and progression-free survival in refractory malignant neoplasms: a meta-analysis. JAMA Oncol 2016;2:1452-1459.
9.
Le Tourneau C, Delord JP, Gonçalves A, Gavoille C, Dubot C, Isambert N, Campone M, Trédan O, Massiani MA, Mauborgne C, Armanet S, Servant N, Bièche I, Bernard V, Gentien D, Jezequel P, Attignon V, Boyault S, Vincent-Salomon A, Servois V, Sablin MP, Kamal M, Paoletti X; SHIVA Investigators: Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 2015;16:1324-1334.
10.
Belin L, Kamal M, Mauborgne C, Plancher C, Mulot F, Delord JP, Gonçalves A, Gavoille C, Dubot C, Isambert N, Campone M, Trédan O, Ricci F, Alt M, Loirat D, Sablin MP, Paoletti X, Servois V, Le Tourneau C: Randomized phase II trial comparing molecularly targeted therapy based on tumor molecular profiling versus conventional therapy in patients with refractory cancer: cross-over analysis from the SHIVA trial. Ann Oncol 2017;28:590-596.
11.
Prasad V, Fojo T, Brada M: Precision oncology: origins, optimism, and potential. Lancet Oncol 2016;17:e81-e86.
12.
Wetterstrand KA: DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). www.genome.gov/sequencingcostsdata (accessed April 10, 2017).
13.
Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:1757-1765.
14.
Stewart EL, Tan SZ, Liu G, Tsao MS: Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations - a review. Trans Lung Cancer Res 2015;4:67-81.
15.
Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N: What can exome sequencing do for you? J Med Genet 2011;48:580-589.
16.
Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nessel- bush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, Galens KG, Murphy D, Zhang T, Kann L, Sausen M, Angiuoli SV, Diaz LA, Velculescu VE: Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Trans Med 2015;7:283ra53.
17.
Mimi Wan JW: RNA sequencing and its applications in cancer diagnosis and targeted therapy. North Am J Med Sci 2014;7:156-162.
18.
Wiesner T, Lee W, Obenauf AC, Ran L, Murali R, Zhang QF, Wong EWP, Hu W, Scott SN, Shah RH, Landa I, Button J, Lailler N, Sboner A, Gao D, Murphy DA, Cao Z, Shukla S, Hollmann TJ, Wang L, Borsu L, Merghoub T, Schwartz GK, Postow MA, Ariyan CE, Fagin JA, Zheng D, Ladanyi M, Busam KJ, Berger MF, Chen Y, Chi P: Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 2015;526:453-457.
19.
Han L, Diao L, Yu S, Xu X, Li J, Zhang R, Yang Y, Werner HM, Eterovic AK, Yuan Y, Li J, Nair N, Minelli R, Tsang YH, Cheung LW, Jeong KJ, Roszik J, Ju Z, Woodman SE, Lu Y, Scott KL, Li JB, Mills GB, Liang H: The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 2015;28:515-528.
20.
Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, Yildiriman R, Jandrasits C, Borodina T, Amstislavskiy V, Worth CL, Schweiger C, Liebs S, Lange M, Warnatz HJ, Butcher LM, Barrett JE, Sultan M, Wierling C, Golob-Schwarzl N, Lax S, Uranitsch S, Becker M, Welte Y, Regan JL, Silvestrov M, Kehler I, Fusi A, Kessler T, Herwig R, Landegren U, Wienke D, Nilsson M, Velasco JA, Garin-Chesa P, Reinhard C, Beck S, Schäfer R, Regenbrecht CRA, Henderson D, Lange B, Haybaeck J, Keilholz U, Hoffmann J, Lehrach H, Yaspo ML: Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 2017;8:14262.
21.
Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, Knox S, Matos E, Meulemans B, Neijenhuis PA, Nitz U, Passalacqua R, Ravdin P, Rubio IT, Saghatchian M, Smilde TJ, Sotiriou C, Stork L, Straehle C, Thomas G, Thompson AM, van der Hoeven JM, Vuylsteke P, Bernards R, Tryfonidis K, Rutgers E, Piccart M; MINDACT Investigators: 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 2016;375:717-729.
22.
Patel SP, Kurzrock R: PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015;14:847-856.
23.
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520.
24.
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Albright A, Cheng SP, Kang J, Ebbinghaus S, Yearley J, Shankaran V, Seiwert T, Ribas A, McClanahan T: Relationship between immune gene signatures and clinical response to PD-1 blockade with pembrolizumab (MK-3475) in patients with advanced solid tumors. J Immunother Cancer 2015;3:80.
25.
Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, Mose LE, Troester MA, Hammerman PS, Parker JS, Perou CM, Hayes DN: Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 2014;42:e107.
26.
Caminsky N, Mucaki EJ, Rogan PK: Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014;3:282.
27.
Salido M, Pijuan L, Martínez-Avilés L, Galván AB, Cañadas I, Rovira A, Zanui M, Martínez A, Longarón R, Sole F, Serrano S, Bellosillo B, Wynes MW, Albanell J, Hirsch FR, Arriola E: Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J Thorac Oncol 2011;6:21-27.
28.
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330-337.
29.
Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA: Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67-73.
30.
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013;499:43-49.
31.
Cancer Genome Atlas Research Network: The molecular taxonomy of primary prostate cancer. Cell 2015;163:1011-1025.
32.
Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004;4:793-805.
33.
Hitosugi T, Chen J: Post-translational modifications and the Warburg effect. Oncogene 2014;33:4279-4285.
34.
Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U: Protein detection using proximity-dependent DNA ligation assays. Nat Biotech 2002;20:473-477.
35.
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N: Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017;17:223-238.
36.
Ogilvie LA, Wierling C, Kessler T, Lehrach H, Lange BMH: Predictive modeling of drug treatment in the area of personalized medicine. Cancer Inform 2015;14:95-103.
37.
Wierling C, Kessler T, Ogilvie LA, Lange BMH, Yaspo ML, Lehrach H: Network and systems biology: essential steps in virtualising drug discovery and development. Drug Discov Today Technol 2015;15:33-40.
You do not currently have access to this content.