Epigenomics encompasses the study of genome-wide changes in DNA methylation, histone modifications and noncoding RNAs leading to altered transcription, chromatin structure, and posttranscription RNA processing, respectively, resulting in an altered rate of gene expression. The role of epigenetic modifications facilitating human diseases is well established. Previous studies have identified histone and cytosine code during normal and pathological conditions with special emphasis on how these modifications regulate transcriptional events. Recent studies have also mapped these epigenetic modification and pathways leading to carcinogenesis. Discovery of drugs that target proteins/enzymes in the epigenetic pathways may provide better therapeutic opportunities, and identification of such modulators for DNA methylation, histone modifications, and expression of noncoding RNAs for several cancer types is underway. In this review, we provide a detailed description of recent developments in the field of epigenetics and its impact on personalized medicine to manage cervical cancer.

1.
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer 2010;127:2893-2917.
2.
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
3.
McGuire S: World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 2016;7:418-419.
4.
Haverkos HW: Multifactorial etiology of cervical cancer: a hypothesis. MedGenMed 2005;7:57.
5.
Woodman CB, Collins SI, Young LS: The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 2007;7:11-22.
6.
Cantone I, Fisher AG: Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013;20:282-289.
7.
Khavari DA, Sen GL, Rinn JL: DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 2010;9:3880-3883.
8.
van den Elsen PJ, van Eggermond MC, Wierda RJ: Epigenetic control in immune function. Adv Exp Med Biol 2011;711:36-49.
9.
Moosavi A, Motevalizadeh Ardekani A: Role of epigenetics in biology and human diseases. Iran Biomed J 2016;20:246-258.
10.
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA: COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2011;39:D945-D950.
11.
Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, et al: Landscape of genomic alterations in cervical carcinomas. Nature 2014;506:371-375.
12.
Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, Barretos Cancer Hospital, Baylor College of Medicine, et al: Integrated genomic and molecular characterization of cervical cancer. Nature 2017;543:378-384.
13.
Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics 2009;1:239-259.
14.
Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB: Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 1994;74:893-899.
15.
Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415-428.
16.
Kabekkodu SP, Bhat S, Radhakrishnan R, Aithal A, Mascarenhas R, Pandey D, Rai L, Kushtagi P, Mundyat GP, Satyamoorthy K: DNA promoter methylation-dependent transcription of the double C2-like domain beta (DOC2B) gene regulates tumor growth in human cervical cancer. J Biol Chem 2014;289:10637-10649.
17.
Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001;10:687-692.
18.
Kulis M, Esteller M: DNA methylation and cancer. Adv Genet 2010;70:27-56.
19.
Towle R, Truong D, Hogg K, Robinson WP, Poh CF, Garnis C: Global analysis of DNA methylation changes during progression of oral cancer. Oral Oncol 2013;49:1033-1042.
20.
Dong X, Weng Z: The correlation between histone modifications and gene expression. Epigenomics 2013;5:113-116.
21.
Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, Dannecker C, Jeschke U, Kost BP: Histone H3 acetyl K9 and histone H3 tri methyl K4 as prognostic markers for patients with cervical cancer. Int J Mol Sci 2017;18.
22.
Howie HL, Katzenellenbogen RA, Galloway DA: Papillomavirus E6 proteins. Virology 2009;384:324-334.
23.
Hebner C, Beglin M, Laimins LA: Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J Virol 2007;81:12740-12747.
24.
Longworth MS, Laimins LA: The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 2004;78:3533-3541.
25.
Garnett TO, Duerksen-Hughes PJ: Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 2006;151:2321-2335.
26.
Thurn KT, Thomas S, Moore A, Munster PN: Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 2011;7:263-283.
27.
Azad N, Zahnow CA, Rudin CM, Baylin SB: The future of epigenetic therapy in solid tumours - lessons from the past. Nat Rev Clin Oncol 2013;10:256-266.
28.
Yang F, Zhang L, Li J, Huang J, Wen R, Ma L, Zhou D, Li L: Trichostatin a and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol 2010;10:178.
29.
Reddy KB: MicroRNA (miRNA) in cancer. Cancer Cell Int 2015;15:38.
30.
Hayes J, Peruzzi PP, Lawler S: MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014;20:460-469.
31.
Xie T, Huang M, Wang Y, Wang L, Chen C, Chu X: MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer. Cell Physiol Biochem 2016;40:62-76.
32.
Bishop KS, Ferguson LR: The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015;7:922-947.
33.
Hardy TM, Tollefsbol TO: Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011;3:503-518.
34.
Choi SW, Friso S: Epigenetics: a new bridge between nutrition and health. Adv Nutr 2010;1:8-16.
35.
Herceg Z: Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 2007;22:91-103.
36.
Alegria-Torres JA, Baccarelli A, Bollati V: Epigenetics and lifestyle. Epigenomics 2011;3:267-277.
37.
Beliveau R, Gingras D: Role of nutrition in preventing cancer. Can Fam Physician 2007;53:1905-1911.
38.
Donaldson MS: Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J 2004;3:19.
39.
Nair S, Pillai MR: Human papillomavirus and disease mechanisms: relevance to oral and cervical cancers. Oral Dis 2005;11:350-359.
40.
Gonzalez-Vallinas M, Gonzalez-Castejon M, Rodriguez-Casado A, Ramirez de Molina A: Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 2013;71:585-599.
41.
Mukherjee N, Kumar AP, Ghosh R: DNA methylation and flavonoids in genitourinary cancers. Curr Pharmacol Rep 2015;1:112-120.
42.
Piyathilake CJ, Badiga S, Kabagambe EK, Azuero A, Alvarez RD, Johanning GL, Partridge EE: A dietary pattern associated with LINE-1 methylation alters the risk of developing cervical intraepithelial neoplasia. Cancer Prev Res (Phila) 2012;5:385-392.
43.
Giuliano AR, Siegel EM, Roe DJ, Ferreira S, Baggio ML, Galan L, Duarte-Franco E, Villa LL, Rohan TE, Marshall JR, Franco EL; Ludwig-McGill HPV Natural History Study: Dietary intake and risk of persistent human papillomavirus (HPV) infection: the Ludwig-Mcgill HPV natural history study. J Infect Dis 2003;188:1508-1516.
44.
Flatley JE, Sargent A, Kitchener HC, Russell JM, Powers HJ: Tumour suppressor gene methylation and cervical cell folate concentration are determinants of high-risk human papillomavirus persistence: a nested case control study. BMC Cancer 2014;14:803.
45.
Fowler BM, Giuliano AR, Piyathilake C, Nour M, Hatch K: Hypomethylation in cervical tissue: is there a correlation with folate status? Cancer Epidemiol Biomarkers Prev 1998;7:901-906.
46.
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A: Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br J Pharmacol 2012;167:279-297.
47.
Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G: Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 2007;101:427-433.
48.
Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB: Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 2011;6:93-108.
49.
Srivastava SK, Arora S, Averett C, Singh S, Singh AP: Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. Biomed Res Int 2015;2015:848710.
50.
Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R: Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 2008;123:552-560.
51.
Zhang Y, Li Q, Chen H: DNA methylation and histone modifications of Wnt genes by genistein during colon cancer development. Carcinogenesis 2013;34:1756-1763.
52.
Tollefsbol TO: Dietary epigenetics in cancer and aging. Cancer Treat Res 2014;159:257-267.
53.
Ali Khan M, Kedhari Sundaram M, Hamza A, Quraishi U, Gunasekera D, Ramesh L, Goala P, Al Alami U, Ansari MZ, Rizvi TA, Sharma C, Hussain A: Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. Evid Based Complement Alternat Med 2015;2015:412149.
54.
Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M, Vishwanatha JK, Santella RM, Cardarelli R: Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr 2011;141:1165-1171.
55.
Castle PE: How does tobacco smoke contribute to cervical carcinogenesis? J Virol 2008;82:6084-6085; author reply 6085-6086.
56.
Stampfli MR, Anderson GP: How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 2009;9:377-384.
57.
Moktar A, Ravoori S, Vadhanam MV, Gairola CG, Gupta RC: Cigarette smoke-induced DNA damage and repair detected by the comet assay in HPV-transformed cervical cells. Int J Oncol 2009;35:1297-1304.
58.
Weiderpass E, Ye W, Tamimi R, Trichopolous D, Nyren O, Vainio H, Adami HO: Alcoholism and risk for cancer of the cervix uteri, vagina, and vulva. Cancer Epidemiol Biomarkers Prev 2001;10:899-901.
59.
Lee KW, Pausova Z: Cigarette smoking and DNA methylation. Front Genet 2013;4:132.
60.
Zakhari S: Alcohol metabolism and epigenetics changes. Alcohol Res 2013;35:6-16.
61.
Wu D, Zhai Q, Shi X: Alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol 2006;21(suppl 3):S26-S29.
62.
Mishra PK, Raghuram GV, Jain D, Jain SK, Khare NK, Pathak N: Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int J Toxicol 2014;33:116-129.
63.
Pathak S, Bhatla N, Singh N: Cervical cancer pathogenesis is associated with one-carbon metabolism. Mol Cell Biochem 2012;369:1-7.
64.
Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV: Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2003;2:24.
65.
Min KJ, Lee JK, Lee S, Kim MK: Alcohol consumption and viral load are synergistically associated with CIN1. PLoS One 2013;8:e72142.
66.
Gibson A, Woodside JV, Young IS, Sharpe PC, Mercer C, Patterson CC, McKinley MC, Kluijtmans LA, Whitehead AS, Evans A: Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers - a randomized, crossover intervention study. QJM 2008;101:881-887.
67.
Zhang D, Wen X, Wu W, Guo Y, Cui W: Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. PLoS One 2015;10:e0123423.
68.
Weinstein SJ, Ziegler RG, Selhub J, Fears TR, Strickler HD, Brinton LA, Hamman RF, Levine RS, Mallin K, Stolley PD: Elevated serum homocysteine levels and increased risk of invasive cervical cancer in us women. Cancer Causes Control 2001;12:317-324.
69.
Bonsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S: Lowered DNA methyltransferase (DNMT-3B) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm (Vienna) 2006;113:1299-1304.
70.
Xi LF, Koutsky LA, Castle PE, Edelstein ZR, Meyers C, Ho J, Schiffman M: Relationship between cigarette smoking and human papilloma virus types 16 and 18 DNA load. Cancer Epidemiol Biomarkers Prev 2009;18:3490-3496.
71.
Gao X, Jia M, Zhang Y, Breitling LP, Brenner H: DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenet 2015;7:113.
72.
Shui IM, Wong CJ, Zhao S, Kolb S, Ebot EM, Geybels MS, Rubicz R, Wright JL, Lin DW, Klotzle B, Bibikova M, Fan JB, Ostrander EA, Feng Z, Stanford JL: Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer 2016;122:2168-2177.
73.
Lea JS, Coleman R, Kurien A, Schorge JO, Miller DS, Minna JD, Muller CY: Aberrant p16 methylation is a biomarker for tobacco exposure in cervical squamous cell carcinogenesis. Am J Obstet Gynecol 2004;190:674-679.
74.
Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P: Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002;21:7435-7451.
75.
Liu B, Ding JF, Luo J, Lu L, Yang F, Tan XD: Seven protective miRNA signatures for prognosis of cervical cancer. Oncotarget 2016;7:56690-56698.
76.
Momi N, Kaur S, Rachagani S, Ganti AK, Batra SK: Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 2014;20:36-47.
77.
Russ R, Slack FJ: Cigarette-smoke-induced dysregulation of microRNA expression and its role in lung carcinogenesis. Pulm Med 2012;2012:791234.
78.
Singh NN, Peer A, Nair S, Chaturvedi RK: Epigenetics: a possible answer to the undeciphered etiopathogenesis and behavior of oral lesions. J Oral Maxillofac Pathol 2016;20:122-128.
79.
Mandrekar P: Epigenetic regulation in alcoholic liver disease. World J Gastroenterol 2011;17:2456-2464.
80.
Liao JB: Viruses and human cancer. Yale J Biol Med 2006;79:115-122.
81.
Vedham V, Divi RL, Starks VL, Verma M: Multiple infections and cancer: implications in epidemiology. Technol Cancer Res Treat 2014;13:177-194.
82.
Tsigrelis C, Berbari E, Temesgen Z: Viral opportunistic infections in HIV-infected adults. J Med Liban 2006;54:91-96.
83.
Duenas-Gonzalez A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E: Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 2005;4:38.
84.
Snellenberg S, Schutze DM, Claassen-Kramer D, Meijer CJ, Snijders PJ, Steenbergen RD: Methylation status of the E2 binding sites of HPV16 in cervical lesions determined with the Luminex® xMAP system. Virology 2012;422:357-365.
85.
Mazumder Indra D, Singh RK, Mitra S, Dutta S, Chakraborty C, Basu PS, Mondal RK, Roychoudhury S, Panda CK: Genetic and epigenetic changes of HPV16 in cervical cancer differentially regulate E6/E7 expression and associate with disease progression. Gynecol Oncol 2011;123:597-604.
86.
Vinokurova S, von Knebel Doeberitz M: Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS One 2011;6:e24451.
87.
Kalantari M, Calleja-Macias IE, Tewari D, Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ, Bernard HU: Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 2004;78:12762-12772.
88.
Bhattacharjee B, Sengupta S: CPG methylation of HPV 16 LCR at E2 binding site proximal to p97 is associated with cervical cancer in presence of intact E2. Virology 2006;354:280-285.
89.
Paschos K, Allday MJ: Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010;18:439-447.
90.
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A: Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenet 2011;2:233-247.
91.
Hattori N, Ushijima T: Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med 2016;8:10.
92.
Zhang Y, Chen FQ, Sun YH, Zhou SY, Li TY, Chen R: Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells. J Exp Clin Cancer Res 2011;30:98.
93.
Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T, Fuks F: Viral oncoproteins target the DNA methyltransferases. Oncogene 2007;26:1650-1655.
94.
Durzynska J, Lesniewicz K, Poreba E: Human papillomaviruses in epigenetic regulations. Mutat Res Rev Mutat Res 2016; http://dx.doi.org/10.1016/j.mrrev.2016.09.006
95.
Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU: CPG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 2003;77:6227-6234.
96.
de la Cruz-Hernandez E, Perez-Cardenas E, Contreras-Paredes A, Cantu D, Mohar A, Lizano M, Duenas-Gonzalez A: The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J 2007;4:18.
97.
Zhang B, Laribee RN, Klemsz MJ, Roman A: Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. Virology 2004;329:189-198.
98.
Lorincz AT, Brentnall AR, Vasiljevic N, Scibior-Bentkowska D, Castanon A, Fiander A, Powell N, Tristram A, Cuzick J, Sasieni P: HPV16 L1 and L2 DNA methylation predicts high-grade cervical intraepithelial neoplasia in women with mildly abnormal cervical cytology. Int J Cancer 2013;133:637-644.
99.
Mirabello L, Sun C, Ghosh A, Rodriguez AC, Schiffman M, Wentzensen N, Hildesheim A, Herrero R, Wacholder S, Lorincz A, Burk RD: Methylation of human papillomavirus type 16 genome and risk of cervical precancer in a Costa Rican population. J Natl Cancer Inst 2012;104:556-565.
100.
Clarke MA, Wentzensen N, Mirabello L, Ghosh A, Wacholder S, Harari A, Lorincz A, Schiffman M, Burk RD: Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol Biomarkers Prev 2012;21:2125-2137.
101.
Hsu CH, Peng KL, Jhang HC, Lin CH, Wu SY, Chiang CM, Lee SC, Yu WC, Juan LJ: The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription. Oncogene 2012;31:2335-2349.
102.
Banno K, Iida M, Yanokura M, Kisu I, Iwata T, Tominaga E, Tanaka K, Aoki D: MicroRNA in cervical cancer: oncomiRs and tumor suppressor miRs in diagnosis and treatment. ScientificWorldJournal 2014;2014:178075.
103.
Zheng ZM, Wang X: Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta 2011;1809:668-677.
104.
Qian K, Pietila T, Ronty M, Michon F, Frilander MJ, Ritari J, Tarkkanen J, Paulin L, Auvinen P, Auvinen E: Identification and validation of human papillomavirus encoded microRNAs. PLoS One 2013;8:e70202.
105.
Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N: Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm 2015;2015:201703.
106.
Milutin Gasperov N, Farkas SA, Nilsson TK, Grce M: Epigenetic activation of immune genes in cervical cancer. Immunol Lett 2014;162:256-257.
107.
Hasan U: Human papillomavirus (HPV) deregulation of Toll-like receptor 9. Oncoimmunology 2014;3:e27257.
108.
Stanley MA: Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev 2012;25:215-222.
109.
Ma D, Jiang C, Hu X, Liu H, Li Q, Li T, Yang Y, Li O: Methylation patterns of the IFN-gamma gene in cervical cancer tissues. Sci Rep 2014;4:6331.
110.
Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, Ritter TM, Dondog B, Ly R, Bosch FX, Zawatzky R, Rosl F: Epigenetic silencing of interferon-kappa in human papillomavirus type 16- positive cells. Cancer Res 2009;69:8718-8725.
111.
Lee S, Kim JH, Kim H, Kang JW, Kim SH, Yang Y, Kim J, Park J, Park S, Hong J, Yoon DY: Activation of the interleukin-32 pro-inflammatory pathway in response to human papillomavirus infection and over-expression of interleukin-32 controls the expression of the human papillomavirus oncogene. Immunology 2011;132:410-420.
112.
Cicchini L, Westrich JA, Xu T, Vermeer DW, Berger JN, Clambey ET, Lee D, Song JI, Lambert PF, Greer RO, Lee JH, Pyeon D: Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of CXCL14. MBio 2016;7:e00270-16.
113.
Sunthamala N, Thierry F, Teissier S, Pientong C, Kongyingyoes B, Tangsiriwatthana T, Sangkomkamhang U, Ekalaksananan T: E2 proteins of high risk human papillomaviruses down-modulate sting and IFN-kappa transcription in keratinocytes. PLoS One 2014;9:e91473.
114.
Jones MJ, Goodman SJ, Kobor MS: DNA methylation and healthy human aging. Aging Cell 2015;14:924-932.
115.
Jung M, Pfeifer GP: Aging and DNA methylation. BMC Biol 2015;13:7.
116.
Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010;20:440-446.
117.
Aviel-Ronen S, Rubinek T, Zadok O, Vituri A, Avivi C, Wolf I, Barshack I: Klotho expression in cervical cancer: Differential expression in adenocarcinoma and squamous cell carcinoma. J Clin Pathol 2016;69:53-57.
118.
Campesi I, Sanna M, Zinellu A, Carru C, Rubattu L, Bulzomi P, Seghieri G, Tonolo G, Palermo M, Rosano G, Marino M, Franconi F: Oral contraceptives modify DNA methylation and monocyte-derived macrophage function. Biol Sex Differ 2012;3:4.
119.
Reed CE, Fenton SE: Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects. Birth Defects Res C Embryo Today 2013;99:134-146.
120.
Troisi R, Hatch EE, Titus-Ernstoff L, Hyer M, Palmer JR, Robboy SJ, Strohsnitter WC, Kaufman R, Herbst AL, Hoover RN: Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer 2007;121:356-360.
121.
Verloop J, van Leeuwen FE, Helmerhorst TJ, de Kok IM, van Erp EJ, van Boven HH, Rookus MA: Risk of cervical intra-epithelial neoplasia and invasive cancer of the cervix in des daughters. Gynecol Oncol 2017;144:305-311.
122.
Bromer JG, Wu J, Zhou Y, Taylor HS: Hypermethylation of homeobox a10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 2009;150:3376-3382.
123.
Herbst AL, Ulfelder H, Poskanzer DC: Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 1971;284:878-881.
124.
Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS: In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010;1:146-155.
125.
Liu Y, Liu T, Bao X, He M, Li L, Yang X: Increased EZH2 expression is associated with proliferation and progression of cervical cancer and indicates a poor prognosis. Int J Gynecol Pathol 2014;33:218-224.
126.
Yin L, Zheng LJ, Jiang X, Liu WB, Han F, Cao J, Liu JY: Effects of low-dose diethylstilbestrol exposure on DNA methylation in mouse spermatocytes. PLoS One 2015;10:e0143143.
127.
Singh NP, Abbas IK, Menard M, Singh UP, Zhang J, Nagarkatti P, Nagarkatti M: Exposure to diethylstilbestrol during pregnancy modulates microRNA expression profile in mothers and fetuses reflecting oncogenic and immunological changes. Mol Pharmacol 2015;87:842-854.
128.
Roy D, Pathak DN: Histone nuclear proteins are irreversibly modified by reactive metabolites of diethylstilbestrol. J Toxicol Environ Health 1995;44:449-459.
129.
Warita K, Mitsuhashi T, Sugawara T, Tabuchi Y, Tanida T, Wang ZY, Matsumoto Y, Yokoyama T, Kitagawa H, Miki T, Takeuchi Y, Hoshi N: Direct effects of diethylstilbestrol on the gene expression of the cholesterol side-chain cleavage enzyme (P450scc) in testicular Leydig cells. Life Sci 2010;87:281-285.
130.
McGuinness D, McGlynn LM, Johnson PC, MacIntyre A, Batty GD, Burns H, Cavanagh J, Deans KA, Ford I, McConnachie A, McGinty A, McLean JS, Millar K, Packard CJ, Sattar NA, Tannahill C, Velupillai YN, Shiels PG: Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol 2012;41:151-160.
131.
Swartz JR, Hariri AR, Williamson DE: An epigenetic mechanism links socioeconomic status to changes in depression-related brain function in high-risk adolescents. Mol Psychiatry 2017;22:209-214.
132.
Stringhini S, Polidoro S, Sacerdote C, Kelly RS, van Veldhoven K, Agnoli C, Grioni S, Tumino R, Giurdanella MC, Panico S, Mattiello A, Palli D, Masala G, Gallo V, Castagne R, Paccaud F, Campanella G, Chadeau-Hyam M, Vineis P: Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol 2015;44:1320-1330.
133.
Gupta A, Ahmad MK, Mahndi AA, Singh R, Pradeep Y: Promoter methylation and relative mRNA expression of the p16 gene in cervical cancer in North Indians. Asian Pac J Cancer Prev 2016;17:4149-4154.
134.
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K: Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017;39:1010428317694573.
135.
Bhat S, Kabekkodu SP, Noronha A, Satyamoorthy K: Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie 2016;121:298-311.
136.
Yang N, Eijsink JJ, Lendvai A, Volders HH, Klip H, Buikema HJ, van Hemel BM, Schuuring E, van der Zee AG, Wisman GB: Methylation markers for CCNA1 and C13ORF18 are strongly associated with high-grade cervical intraepithelial neoplasia and cervical cancer in cervical scrapings. Cancer Epidemiol Biomarkers Prev 2009;18:3000-3007.
137.
Siegel EM, Riggs BM, Delmas AL, Koch A, Hakam A, Brown KD: Quantitative DNA methylation analysis of candidate genes in cervical cancer. PLoS One 2015;10:e0122495.
138.
van der Meide WF, Snellenberg S, Meijer CJ, Baalbergen A, Helmerhorst TJ, van der Sluis WB, Snijders PJ, Steenbergen RD: Promoter methylation analysis of Wnt/beta-catenin signaling pathway regulators to detect adenocarcinoma or its precursor lesion of the cervix. Gynecol Oncol 2011;123:116-122.
139.
Widschwendter A, Ivarsson L, Blassnig A, Muller HM, Fiegl H, Wiedemair A, Muller-Holzner E, Goebel G, Marth C, Widschwendter M: CDH1 and CDH13 methylation in serum is an independent prognostic marker in cervical cancer patients. Int J Cancer 2004;109:163-166.
140.
Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, Yu J, Batova A, Lai KW, Chang AM: Methylation of P16INK4A in primary gynecologic malignancy. Cancer Lett 1999;136:231-235.
141.
Virmani AK, Muller C, Rathi A, Zoechbauer-Mueller S, Mathis M, Gazdar AF: Aberrant methylation during cervical carcinogenesis. Clin Cancer Res 2001;7:584-589.
142.
Li JY, Huang T, Zhang C, Jiang DJ, Hong QX, Ji HH, Ye M, Duan SW: Association between RASSF1A promoter hypermethylation and oncogenic HPV infection status in invasive cervical cancer: a meta-analysis. Asian Pac J Cancer Prev 2015;16:5749-5754.
143.
Bai LX, Wang JT, Ding L, Jiang SW, Kang HJ, Gao CF, Chen X, Chen C, Zhou Q: Folate deficiency and FHIT hypermethylation and HPV 16 infection promote cervical cancerization. Asian Pac J Cancer Prev 2014;15:9313-9317.
144.
Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J: Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among North Indian population. Mol Biol Rep 2012;39:9145-9157.
145.
Woo HJ, Kim SJ, Song KJ, Kim SS, Yoon CH, Choi BS, Rhee JE: Hypermethylation of the tumor-suppressor cell adhesion molecule 1 in human papillomavirus-transformed cervical carcinoma cells. Int J Oncol 2015;46:2656-2662.
146.
Jiang T, Huang L, Wang S, Zhang S: Clinical significance of serum DKK-3 in patients with gynecological cancer. J Obstet Gynaecol Res 2010;36:769-773.
147.
Shivapurkar N, Toyooka S, Toyooka KO, Reddy J, Miyajima K, Suzuki M, Shigematsu H, Takahashi T, Parikh G, Pass HI, Chaudhary PM, Gazdar AF: Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 2004;109:786-792.
148.
Zhao S, Sun G, Tony PW, Ma D, Zhao C: Expression and methylation status of the Syk gene in cervical carcinoma. Arch Gynecol Obstet 2011;283:1113-1119.
149.
Qi Q, Ling Y, Zhu M, Zhou L, Wan M, Bao Y, Liu Y: Promoter region methylation and loss of protein expression of PTEN and significance in cervical cancer. Biomed Rep 2014;2:653-658.
150.
Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ, Snijders PJ: TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 2004;96:294-305.
151.
Nye MD, Hoyo C, Huang Z, Vidal AC, Wang F, Overcash F, Smith JS, Vasquez B, Hernandez B, Swai B, Oneko O, Mlay P, Obure J, Gammon MD, Bartlett JA, Murphy SK: Associations between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS One 2013;8:e56325.
152.
De Strooper LM, Meijer CJ, Berkhof J, Hesselink AT, Snijders PJ, Steenbergen RD, Heideman DA: Methylation analysis of the FAM19A4 gene in cervical scrapes is highly efficient in detecting cervical carcinomas and advanced CIN2/3 lesions. Cancer Prev Res (Phila) 2014;7:1251-1257.
153.
Vasiljevic N, Scibior-Bentkowska D, Brentnall AR, Cuzick J, Lorincz AT: Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women. Gynecol Oncol 2014;132:709-714.
154.
Brebi P, Hoffstetter R, Andana A, Ili CG, Saavedra K, Viscarra T, Retamal J, Sanchez R, Roa JC: Evaluation of ZAR1 and SFRP4 methylation status as potentials biomarkers for diagnosis in cervical cancer: exploratory study phase I. Biomarkers 2014;19:181-188.
155.
Muller HM, Fiegl H, Widschwendter A, Widschwendter M: Prognostic DNA methylation marker in serum of cancer patients. Ann NY Acad Sci 2004;1022:44-49.
156.
Jo H, Kang S, Kim JW, Kang GH, Park NH, Song YS, Park SY, Kang SB, Lee HP: Hypermethylation of the COX-2 gene is a potential prognostic marker for cervical cancer. J Obstet Gynaecol Res 2007;33:236-241.
157.
Mitra S, Mazumder Indra D, Basu PS, Mondal RK, Roy A, Roychoudhury S, Panda CK: Alterations of RASSF1A in premalignant cervical lesions: clinical and prognostic significance. Mol Carcinog 2012;51:723-733.
158.
Lof-Ohlin ZM, Sorbe B, Wingren S, Nilsson TK: Hypermethylation of promoter regions of the APC1A and P16INK4A genes in relation to prognosis and tumor characteristics in cervical cancer patients. Int J Oncol 2011;39:683-688.
159.
Lee MK, Jeong EM, Kim JH, Rho SB, Lee EJ: Aberrant methylation of the vim promoter in uterine cervical squamous cell carcinoma. Oncology 2014;86:359-368.
160.
Lando M, Fjeldbo CS, Wilting SM, B CS, Aarnes EK, Forsberg MF, Kristensen GB, Steenbergen RD, Lyng H: Interplay between promoter methylation and chromosomal loss in gene silencing at 3p11-p14 in cervical cancer. Epigenetics 2015;10:970-980.
161.
Hao Z, Yang J, Wang C, Li Y, Zhang Y, Dong X, Zhou L, Liu J, Zhang Y, Qian J: MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. Int J Clin Exp Med 2015;8:480-487.
162.
Zhou Q, Han LR, Zhou YX, Li Y: Mir-195 suppresses cervical cancer migration and invasion through targeting SMAD3. Int J Gynecol Cancer 2016;26:817-824.
163.
Hu T, Chang YF, Xiao Z, Mao R, Tong J, Chen B, Liu GC, Hong Y, Chen HL, Kong SY, Huang YM, Xiyang YB, Jin H: miR-1 inhibits progression of high-risk papillomavirus-associated human cervical cancer by targeting G6PD. Oncotarget 2016;7:86103-86116.
164.
Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE: MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep 2015;33:2393-2401.
165.
Luo M, Shen D, Zhou X, Chen X, Wang W: MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery 2013;153:836-847.
166.
Zhou N, Fei D, Zong S, Zhang M, Yue Y: MicroRNA-138 inhibits proliferation, migration and invasion through targeting hTERT in cervical cancer. Oncol Lett 2016;12:3633-3639.
167.
Wang F, Liu M, Li X, Tang H: miR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of BCL2L2 in cervical cancer cells. FEBS Lett 2013;587:488-495.
168.
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W, Yang X, Dai K, Huang G: miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2016;7:44252-44265.
169.
Mao L, Zhang Y, Deng X, Mo W, Yu Y, Lu H: Transcription factor KLF4 regulates microRNA-544 that targets YWHAZ in cervical cancer. Am J Cancer Res 2015;5:1939-1953.
170.
Wang X, Xia Y: MicroRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2. Biochem Biophys Res Commun 2016;475:169-175.
171.
Wang Q, Qin J, Chen A, Zhou J, Liu J, Cheng J, Qiu J, Zhang J: Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer. Tumour Biol 2015;36:3703-3708.
172.
Liang H, Li Y, Luo RY, Shen FJ: MicroRNA-215 is a potential prognostic marker for cervical cancer. J Huazhong Univ Sci Technolog Med Sci 2014;34:207-212.
173.
Azizmohammadi S, Safari A, Azizmohammadi S, Kaghazian M, Sadrkhanlo M, Yahaghi E, Farshgar R, Seifoleslami M: Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection. QJM 2017;110:11-15.
174.
Zhang YX, Qin LL, Yang SY: Down-regulation of miR-664 in cervical cancer is associated with lower overall survival. Eur Rev Med Pharmacol Sci 2016;20:1740-1744.
175.
Wang N, Zhou Y, Zheng L, Li H: MiR-31 is an independent prognostic factor and functions as an oncomiR in cervical cancer via targeting ARID1A. Gynecol Oncol 2014;134:129-137.
176.
Zhang T, Zou P, Wang T, Xiang J, Cheng J, Chen D, Zhou J: Down-regulation of miR-320 associated with cancer progression and cell apoptosis via targeting Mcl-1 in cervical cancer. Tumour Biol 2016;37:8931-8940.
177.
Shen SN, Wang LF, Jia YF, Hao YQ, Zhang L, Wang H: Upregulation of microRNA-224 is associated with aggressive progression and poor prognosis in human cervical cancer. Diagn Pathol 2013;8:69.
178.
Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H: miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun 2015;458:63-69.
You do not currently have access to this content.