Approximately 20% of all cancers are associated with infectious agents. Among them, human papillomaviruses (HPVs) are very common and are now recognized as the etiological agent of cervical cancer, the second most common cancer in women worldwide, and they are increasingly linked with other forms of dysplasia. Carcinogenesis is a complex and multistep process requiring the acquisition of several genetic and/or epigenetic alterations. HPV-induced neoplasia, however, is in part mediated by the intrinsic functions of the viral proteins. In order to replicate its genome, HPV modulates the cell cycle, while deploying mechanisms to escape the host immune response, cellular senescence and apoptosis. As such, HPV infection leads directly and indirectly to genomic instability, further favouring transforming genetic events and progression to malignancy. This review aims to summarize our current understanding of the molecular mechanisms exploited by HPV to induce neoplasia, with an emphasis on the role of the 2 viral oncoproteins E6 and E7. Greater understanding of the role of HPV proteins in these processes will ultimately aid in the development of antiviral therapies, as well as unravel general mechanisms of oncogenesis.

1.
Rous P, Beard JW: The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Exp Med 1935;62:523–548.
2.
Shope RE, Hurst EW: Infectious papillomatosis of rabbits: with a note on the histopathology. J Exp Med 1933;58:607–624.
3.
Gissmann L, zur Hausen H: Partial characterization of viral DNA from human genital warts (Condylomata acuminata). Int J Cancer 1980;25:605–609.
4.
Durst M, Gissmann L, Ikenberg H, zur Hausen H: A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983;80:3812–3815.
5.
de Martel C, Franceschi S: Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 2008, E-pub ahead of print.
6.
Parkin DM: The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006;118:3030–3044.
7.
de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H: Classification of papillomaviruses. Virology 2004;324:17–27.
8.
Rous P, Kidd JG, Beard JW: Observations on the relation of the virus causing rabbit papillomas to the cancers deriving therefrom. 1. The influence of the host species and of the pathogenic activity and concentration of the virus. J Exp Med 1936;64:385–400.
9.
Stanley MA, Pett MR, Coleman N: HPV: from infection to cancer. Biochem Soc Trans 2007;35:1456–1460.
10.
Baseman JG, Koutsky LA: The epidemiology of human papillomavirus infections. J Clin Virol 2005;32(suppl 1):S16–S24.
11.
Schiffman M, Kjaer SK: Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr 2003;31:14–19.
12.
zur Hausen H: Papillomavirus infections: a major cause of human cancers. Biochim Biophys Acta 1996;1288:F55–F78.
13.
Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV: The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002;55:244–265.
14.
Parkin DM, Bray F, Ferlay J, Pisani P: Global Cancer Statistics, 2002. CA Cancer J Clin 2005;55:74–108.
15.
Castellsagué X, de Sanjosé S, Aguado T, Louie KS, Bruni L, Munoz J, Diaz M, Irwin K, Gacic M, Beauvais O, Albero G, Ferrer E, Byrne S, Bosch FX: HPV and cervical cancer in the World: 2007 Report. Vaccine 2007;25:C1–C26.
16.
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer Statistics, 2008. CA Cancer J Clin 2008;58:71–96.
17.
Hoory T, Monie A, Gravitt P, Wu TC: Molecular epidemiology of human papillomavirus. J Formos Med Assoc 2008;107:198–217.
18.
Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE, Shah KV, Sidransky D: Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709–720.
19.
Kreimer AR, Clifford GM, Boyle P, Franceschi S: Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005;14:467–475.
20.
Syrjanen S: Human papillomavirus (HPV) in head and neck cancer. J Clin Virol 2005;32(suppl 1):S59–S66.
21.
Syrjanen S: Human papillomaviruses in head and neck carcinomas. N Engl J Med 2007;356:1993–1995.
22.
zur Hausen H: Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342–350.
23.
Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N: Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189:12–19.
24.
Bohmer G, van den Brule AJ, Brummer O, Meijer CL, Petry KU: No confirmed case of human papillomavirus DNA-negative cervical intraepithelial neoplasia grade 3 or invasive primary cancer of the uterine cervix among 511 patients. Am J Obstet Gynecol 2003;189:118–120.
25.
Daling JR, Madeleine MM, Johnson LG, Schwartz SM, Shera KA, Wurscher MA, Carter JJ, Porter PL, Galloway DA, McDougall JK: Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer 2004;101:270–280.
26.
Frisch M, Fenger C, van den Brule AJ, Sorensen P, Meijer CJ, Walboomers JM, Adami HO, Melbye M, Glimelius B: Variants of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papillomaviruses. Cancer Res 1999;59:753–757.
27.
Partridge JM, Koutsky LA: Genital human papillomavirus infection in men. Lancet Infect Dis 2006;6:21–31.
28.
Frisch M, Biggar RJ, Goedert JJ: Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst 2000;92:1500–1510.
29.
Nindl I, Rosl F: Molecular concepts of virus infections causing skin cancer in organ transplant recipients. Am J Transplant 2008;8:2199–2204.
30.
Shamanin V, zur Hausen H, Lavergne D, Proby CM, Leigh IM, Neumann C, Hamm H, Goos M, Haustein UF, Jung EG, Plewig G, Wolff H, de Villiers EM: Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 1996;88:802–811.
31.
Harwood CA, McGregor JM, Proby CM, Breuer J: Human papillomavirus and the development of non-melanoma skin cancer. J Clin Pathol 1999;52:249–253.
32.
de Sanjose S, Palefsky J: Cervical and anal HPV infections in HIV positive women and men. Virus Res 2002;89:201–211.
33.
Fakhry C, D’Souza G, Sugar E, Weber K, Goshu E, Minkoff H, Wright R, Seaberg E, Gillison M: Relationship between prevalent oral and cervical human papillomavirus infections in human immunodeficiency virus-positive and -negative women. J Clin Microbiol 2006;44:4479–4485.
34.
Doorbar J: Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 2006;110:525–541.
35.
Hebner CM, Laimins LA: Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 2006;16:83–97.
36.
Bousarghin L, Touze A, Sizaret PY, Coursaget P: Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 2003;77:3846–3850.
37.
Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM: The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 1999;274:5810–5822.
38.
Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, Streeck RE, Sapp M: Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J Virol 2006;80:6691–6696.
39.
Fradet-Turcotte A, Archambault J: Recent advances in the search for antiviral agents against human papillomaviruses. Antivir Ther 2007;12:431–451.
40.
Bouvard V, Storey A, Pim D, Banks L: Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J 1994;13:5451–5459.
41.
Steger G, Corbach S: Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 1997;71:50–58.
42.
McBride AA, McPhillips MG, Oliveira JG: Brd4: tethering, segregation and beyond. Trends Microbiol 2004;12:527–529.
43.
Senechal H, Poirier GG, Coulombe B, Laimins LA, Archambault J: Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 2007;358:10–17.
44.
Fehrmann F, Klumpp DJ, Laimins LA: Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 2003;77:2819–2831.
45.
Genther SM, Sterling S, Duensing S, Munger K, Sattler C, Lambert PF: Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 2003;77:2832–2842.
46.
Wilson R, Fehrmann F, Laimins LA: Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol 2005;79:6732–6740.
47.
Durst M, Kleinheinz A, Hotz M, Gissmann L: The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 1985;66:1515–1522.
48.
Ziegert C, Wentzensen N, Vinokurova S, Kisseljov F, Einenkel J, Hoeckel M, von Knebel Doeberitz M: A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene 2003;22:3977–3984.
49.
Wentzensen N, Vinokurova S, von Knebel Doeberitz M: Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 2004;64:3878–3884.
50.
Durst M, Croce CM, Gissmann L, Schwarz E, Huebner K: Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 1987;84:1070–1074.
51.
Ferber MJ, Montoya DP, Yu C, Aderca I, McGee A, Thorland EC, Nagorney DM, Gostout BS, Burgart LJ, Boix L, Bruix J, McMahon BJ, Cheung TH, Chung TK, Wong YF, Smith DI, Roberts LR: Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 2003;22:3813–3820.
52.
Ferber MJ, Thorland EC, Brink AA, Rapp AK, Phillips LA, McGovern R, Gostout BS, Cheung TH, Chung TK, Fu WY, Smith DI: Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. Oncogene 2003;22:7233–7242.
53.
Popescu NC, DiPaolo JA: Integration of human papillomavirus 16 DNA and genomic rearrangements in immortalized human keratinocyte lines. Cancer Res 1990;50:1316–1323.
54.
Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM: Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 1987;61:962–971.
55.
Woodworth CD, Doniger J, DiPaolo JA: Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. J Virol 1989;63:159–164.
56.
DeFilippis RA, Goodwin EC, Wu L, DiMaio D: Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 2003;77:1551–1563.
57.
Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT: HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989;8:3905–3910.
58.
Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R: The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989;63:4417–4421.
59.
Moon MS, Lee CJ, Um SJ, Park JS, Yang JM, Hwang ES: Effect of BPV1 E2-mediated inhibition of E6/E7 expression in HPV16-positive cervical carcinoma cells. Gynecol Oncol 2001;80:168–175.
60.
Nishimura A, Nakahara T, Ueno T, Sasaki K, Yoshida S, Kyo S, Howley PM, Sakai H: Requirement of E7 oncoprotein for viability of HeLa cells. Microbes Infect 2006;8:984–993.
61.
Herber R, Liem A, Pitot H, Lambert PF: Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 1996;70:1873–1881.
62.
Song S, Pitot HC, Lambert PF: The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J Virol 1999;73:5887–5893.
63.
Kanda T, Watanabe S, Yoshiike K: Immortalization of primary rat cells by human papillomavirus type 16 subgenomic DNA fragments controlled by the SV40 promoter. Virology 1988;165:321–325.
64.
Yasumoto S, Burkhardt AL, Doniger J, DiPaolo JA: Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol 1986;57:572–577.
65.
Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM: Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 2003;63:4862–4871.
66.
Phelps WC, Yee CL, Munger K, Howley PM: The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 1988;53:539–547.
67.
Dyson N, Howley PM, Munger K, Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989;243:934–937.
68.
Gonzalez SL, Stremlau M, He X, Basile JR, Munger K: Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 2001;75:7583–7591.
69.
Zhang B, Chen W, Roman A: The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci USA 2006;103:437–442.
70.
Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K: Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 2007;81:9737–9747.
71.
Phelps WC, Munger K, Yee CL, Barnes JA, Howley PM: Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol 1992;66:2418–2427.
72.
Jones DL, Thompson DA, Munger K: Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 1997;239:97–107.
73.
Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 1995;92:2563–2567.
74.
Beer-Romero P, Glass S, Rolfe M: Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 1997;14:595–602.
75.
Huibregtse JM, Scheffner M, Howley PM: A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991;10:4129–4135.
76.
Band V, De Caprio JA, Delmolino L, Kulesa V, Sager R: Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991;65:6671–6676.
77.
Dalal S, Gao Q, Androphy EJ, Band V: Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J Virol 1996;70:683–688.
78.
Talis AL, Huibregtse JM, Howley PM: The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 1998;273:6439–6445.
79.
Mantovani F, Banks L: Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene 1999;18:3309–3315.
80.
Patel D, Huang SM, Baglia LA, McCance DJ: The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 1999;18:5061–5072.
81.
Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ: The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999;73:6209–6219.
82.
Li X, Coffino P: High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol 1996;70:4509–4516.
83.
Brimer N, Lyons C, Vande Pol SB: Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology 2007;358:303–310.
84.
Mantovani F, Banks L: The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001;20:7874–7887.
85.
Storrs CH, Silverstein SJ: PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 2007;81:4080–4090.
86.
Favre-Bonvin A, Reynaud C, Kretz-Remy C, Jalinot P: Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J Virol 2005;79:4229–4237.
87.
Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME, Klingelhutz AJ, Hendriks W, Bossler AD, Lee JH: The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol 2008;82:2493–2500.
88.
Lee C, Laimins LA: Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol 2004;78:12366–12377.
89.
Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF: The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol 2003;77:6957–6964.
90.
Shai A, Brake T, Somoza C, Lambert PF: The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res 2007;67:1626–1635.
91.
Pim D, Massimi P, Banks L: Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene 1997;15:257–264.
92.
Hurlin PJ, Kaur P, Smith PP, Perez-Reyes N, Blanton RA, McDougall JK: Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci USA 1991;88:570–574.
93.
Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000;100:57–70.
94.
Alonio LV, Picconi MA, Dalbert D, Mural J, Bartt O, Bazan G, Dominguez M, Teyssie AR: Ha-ras oncogene mutation associated to progression of papillomavirus induced lesions of uterine cervix. J Clin Virol 2003;27:263–269.
95.
Grendys EC Jr, Barnes WA, Weitzel J, Sparkowski J, Schlegel R: Identification of H, K, and N-ras point mutations in stage IB cervical carcinoma. Gynecol Oncol 1997;65:343–347.
96.
Crook T, Storey A, Almond N, Osborn K, Crawford L: Human papillomavirus type 16 cooperates with activated ras and fos oncogenes in the hormone-dependent transformation of primary mouse cells. Proc Natl Acad Sci USA 1988;85:8820–8824.
97.
Matlashewski G, Schneider J, Banks L, Jones N, Murray A, Crawford L: Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J 1987;6:1741–1746.
98.
Klausner RD: The fabric of cancer cell biology: weaving together the strands. Cancer Cell 2002;1:3–10.
99.
Duensing S, Munger K: Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 2002;21:6241–6248.
100.
White AE, Livanos EM, Tlsty TD: Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 1994;8:666–677.
101.
Hashida T, Yasumoto S: Induction of chromosome abnormalities in mouse and human epidermal keratinocytes by the human papillomavirus type 16 E7 oncogene. J Gen Virol 1991;72:1569–1577.
102.
Pett MR, Alazawi WO, Roberts I, Dowen S, Smith DI, Stanley MA, Coleman N: Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res 2004;64:1359–1368.
103.
Vermeulen CF, Jordanova ES, Szuhai K, Kolkman-Uljee S, Vrede MA, Peters AA, Schuuring E, Fleuren GJ: Physical status of multiple human papillomavirus genotypes in flow-sorted cervical cancer cells. Cancer Genet Cytogenet 2007;175:132–137.
104.
Cahill DP, Kinzler KW, Vogelstein B, Lengauer C: Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999;9:M57–M60.
105.
Duensing S, Munger K: Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Res 2003;5:383–391.
106.
Thomas JT, Laimins LA: Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol 1998;72:1131–1137.
107.
Thompson DA, Belinsky G, Chang TH, Jones DL, Schlegel R, Munger K: The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 1997;15:3025–3035.
108.
Southern SA, Noya F, Meyers C, Broker TR, Chow LT, Herrington CS: Tetrasomy is induced by human papillomavirus type 18 E7 gene expression in keratinocyte raft cultures. Cancer Res 2001;61:4858–4863.
109.
Duensing S, Duensing A, Crum CP, Munger K: Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 2001;61:2356–2360.
110.
Weitzman MD, Carson CT, Schwartz RA, Lilley CE: Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2004;3:1165–1173.
111.
Patel KJ, Joenje H: Fanconi anemia and DNA replication repair. DNA Repair (Amst) 2007;6:885–890.
112.
Wang W: Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007;8:735–748.
113.
Kutler DI, Wreesmann VB, Goberdhan A, Ben-Porat L, Satagopan J, Ngai I, Huvos AG, Giampietro P, Levran O, Pujara K, Diotti R, Carlson D, Huryn LA, Auerbach AD, Singh B: Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J Natl Cancer Inst 2003;95:1718–1721.
114.
Narayan G, Arias-Pulido H, Nandula SV, Basso K, Sugirtharaj DD, Vargas H, Mansukhani M, Villella J, Meyer L, Schneider A, Gissmann L, Durst M, Pothuri B, Murty VV: Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 2004;64:2994–2997.
115.
Dong SM, Kim HS, Rha SH, Sidransky D: Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res 2001;7:1982–1986.
116.
Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, Dembele B, Critchlow CW, Xi L, Lu H, McIntosh MW, Young AM, Kiviat NB: Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 2005;97:273–282.
117.
Sova P, Feng Q, Geiss G, Wood T, Strauss R, Rudolf V, Lieber A, Kiviat N: Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev 2006;15:114–123.
118.
Spardy N, Duensing A, Charles D, Haines N, Nakahara T, Lambert PF, Duensing S: The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 2007;81:13265–13270.
119.
Hoskins EE, Gunawardena RW, Habash KB, Wise-Draper TM, Jansen M, Knudsen ES, Wells SI: Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene 2008;27:4798–4808.
120.
Howlett NG, Taniguchi T, Durkin SG, D’Andrea AD, Glover TW: The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 2005;14:693–701.
121.
Thorland EC, Myers SL, Gostout BS, Smith DI: Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 2003;22:1225–1237.
122.
Wang Y, Wiltshire T, Senft J, Wenger SL, Reed E, Wang W: Fanconi anemia D2 protein confers chemoresistance in response to the anticancer agent, irofulven. Mol Cancer Ther 2006;5:3153–3161.
123.
He W, Staples D, Smith C, Fisher C: Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol 2003;77:10566–10574.
124.
Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA: Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 1997;11:2090–2100.
125.
Jones DL, Alani RM, Munger K: The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 1997;11:2101–2111.
126.
Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P: Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 1996;13:2323–2330.
127.
Longworth MS, Laimins LA: The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 2004;78:3533–3541.
128.
Longworth MS, Wilson R, Laimins LA: HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J 2005;24:1821–1830.
129.
DiMaio D, Mattoon D: Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 2001;20:7866–7873.
130.
Shirasawa H, Tomita Y, Sekiya S, Takamizawa H, Simizu B: Integration and transcription of human papillomavirus type 16 and 18 sequences in cell lines derived from cervical carcinomas. J Gen Virol 1987;68:583–591.
131.
Valle GF, Banks L: The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 1995;76:1239–1245.
132.
Cong YS, Wright WE, Shay JW: Human telomerase and its regulation. Microbiol Mol Biol Rev 2002;66:407–425.
133.
Shay JW, Bacchetti S: A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787–791.
134.
Snijders PJ, van Duin M, Walboomers JM, Steenbergen RD, Risse EK, Helmerhorst TJ, Verheijen RH, Meijer CJ: Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res 1998;58:3812–3818.
135.
Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ: Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998;396:84–88.
136.
Veldman T, Liu X, Yuan H, Schlegel R: Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA 2003;100:8211–8216.
137.
Oh ST, Kyo S, Laimins LA: Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 2001;75:5559–5566.
138.
Galloway DA, Gewin LC, Myers H, Luo W, Grandori C, Katzenellenbogen RA, McDougall JK: Regulation of telomerase by human papillomaviruses. Cold Spring Harb Symp Quant Biol 2005;70:209–215.
139.
Gewin L, Galloway DA: E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 2001;75:7198–7201.
140.
Gewin L, Myers H, Kiyono T, Galloway DA: Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004;18:2269–2282.
141.
Sekaric P, Cherry JJ, Androphy EJ: Binding of human papillomavirus type 16 E6 to E6AP is not required for activation of hTERT. J Virol 2008;82:71–76.
142.
Pan H, Griep AE: Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev 1995;9:2157–2169.
143.
Vogt M, Butz K, Dymalla S, Semzow J, Hoppe-Seyler F: Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene 2006;25:4009–4015.
144.
Thomas M, Banks L: Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 1998;17:2943–2954.
145.
Thomas M, Banks L: Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 1999;80:1513–1517.
146.
Krajewski S, Krajewska M, Reed JC: Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res 1996;56:2849–2855.
147.
Gaur U, Aggarwal BB: Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 2003;66:1403–1408.
148.
Filippova M, Parkhurst L, Duerksen-Hughes PJ: The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 2004;279:25729–25744.
149.
Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ: The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 2002;277:21730–21739.
150.
Kabsch K, Alonso A: The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol 2002;76:12162–12172.
151.
Thompson DA, Zacny V, Belinsky GS, Classon M, Jones DL, Schlegel R, Munger K: The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene 2001;20:3629–3640.
152.
Garnett TO, Duerksen-Hughes PJ: Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 2006;151:2321–2335.
153.
Jackson S, Storey A: E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 2000;19:592–598.
154.
Frisch SM, Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol 1997;9:701–706.
155.
Sastry SK, Horwitz AF: Adhesion-growth factor interactions during differentiation: an integrated biological response. Dev Biol 1996;180:455–467.
156.
Tong X, Howley PM: The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci USA 1997;94:4412–4417.
157.
Vande Pol SB, Brown MC, Turner CE: Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 1998;16:43–52.
158.
Du M, Fan X, Hong E, Chen JJ: Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem Biophys Res Commun 2002;296:962–969.
159.
Degenhardt YY, Silverstein S: Interaction of zyxin, a focal adhesion protein, with the e6 protein from human papillomavirus type 6 results in its nuclear translocation. J Virol 2001;75:11791–11802.
160.
Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K: Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci USA 2005;102:11492–11497.
161.
Massimi P, Gammoh N, Thomas M, Banks L: HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 2004;23:8033–8039.
162.
Tomaic V, Gardiol D, Massimi P, Ozbun M, Myers M, Banks L: Human and primate tumour viruses use PDZ binding as an evolutionarily conserved mechanism of targeting cell polarity regulators. Oncogene 2009;28:1–8.
163.
Kupper TS, Fuhlbrigge RC: Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004;4:211–222.
164.
Tindle RW: Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2002;2:59–65.
165.
Woodworth CD: HPV innate immunity. Front Biosci 2002;7:d2058–d2071.
166.
Chang YE, Laimins LA: Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 2000;74:4174–4182.
167.
Ronco LV, Karpova AY, Vidal M, Howley PM: Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998;12:2061–2072.
168.
Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, Matlashewski GJ, Koromilas AE: The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 1999;18:5727–5737.
169.
Barnard P, Payne E, McMillan NA: The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology 2000;277:411–419.
170.
Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ: Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein: implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 2000;275:6764–6769.
171.
Perea SE, Massimi P, Banks L: Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int J Mol Med 2000;5:661–666.
172.
Hebner CM, Wilson R, Rader J, Bidder M, Laimins LA: Human papillomaviruses target the double-stranded RNA protein kinase pathway. J Gen Virol 2006;87:3183–3193.
173.
Ashrafi GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS: E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer 2005;113:276–283.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.