Introduction: Diabetes mellitus is known to provoke devastating anomalies in myocardial structure and function, while effective therapeutic regimen is still lacking. The selective protease inhibitor UCF101 (5-[5-(2-nitrophenyl) furfuryl iodine]-1,3-diphenyl-2-thiobarbituric acid) has been shown to fend off ischemic heart injury, although its impact on diabetic cardiomyopathy remains elusive. Methods: Our present work was conducted to examine the effect of UCF101 on experimental diabetes-evoked cardiac geometric and functional abnormalities as well as mechanisms involved. Adult mice were made diabetic using streptozotocin (STZ, 50 mg/kg, i.p., for 5 days) while receiving UCF101 (7.15 mg/kg, i.p.). Results: STZ evoked cardiac hypertrophy, interstitial fibrosis, mitochondrial ultrastructural damage, oxidative stress, dampened autophagy (LC3B, Beclin 1, elevated p62), mitophagy (FUNDC1 and Parkin with upregulated TOM20), increased left ventricular end systolic diameter, reduced fractional shortening, ejection fraction, cardiomyocyte shortening capacity, velocities of shortening/re-lengthening, and rise in intracellular Ca2+ in conjunction with elongated diastole and intracellular Ca2+ removal, the responses were overtly reconciled by UCF101 with little effects from UCF101 itself. Levels of cell injury markers Omi/HtrA2, TNFα, and stress signaling (JNK, ERK, p38) were overtly enhanced along with compromised phosphorylation of cellular fuel AMP-activated protein kinase (AMPK) (Thr172) and cell survival molecule GSK3β, as well as downregulated SERCA2a and elevated phospholamban, the effect was reversed by UCF101 (except for SERCA2a). AMPK knockout, pharmacological inhibition, the mitophagy inhibitor liensinine, and parkin knockout nullified UCF101-offered cardioprotection in diabetes. UCF101 reversed STZ-induced upregulation in the AMPK degrading enzymes PP2A and PP2C. Conclusion: These findings suggest that UCF101 rescues diabetes-mediated alterations in cardiac structure and function, likely through AMPK-mediated regulation of mitophagy.

1.
Tobias
DK
,
Merino
J
,
Ahmad
A
,
Aiken
C
,
Benham
JL
,
Bodhini
D
, et al
.
Second International consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
.
Nat Med
.
2023
;
29
(
10
):
2438
57
.
2.
American Diabetes Association Professional Practice Committee
.
4. Comprehensive medical evaluation and assessment of comorbidities: standards of care in diabetes-2024
.
Diabetes Care
.
2024
;
47
(
Suppl 1
):
S52
76
.
3.
Chandrasekaran
P
,
Weiskirchen
S
,
Weiskirchen
R
.
Effects of probiotics on gut microbiota: an overview
.
Int J Mol Sci
.
2024
;
25
(
11
):
6022
.
4.
Wold
LE
,
Ceylan-Isik
AF
,
Ren
J
.
Oxidative stress and stress signaling: menace of diabetic cardiomyopathy
.
Acta Pharmacol Sin
.
2005
;
26
(
8
):
908
17
.
5.
Ceylan-Isik
AF
,
Fliethman
RM
,
Wold
LE
,
Ren
J
.
Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus
.
Curr Diabetes Rev
.
2008
;
4
(
4
):
320
8
.
6.
Zhang
Y
,
Sowers
JR
,
Ren
J
.
Targeting autophagy in obesity: from pathophysiology to management
.
Nat Rev Endocrinol
.
2018
;
14
(
6
):
356
76
.
7.
Abudureyimu
M
,
Luo
X
,
Wang
X
,
Sowers
JR
,
Wang
W
,
Ge
J
, et al
.
Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics
.
J Mol Cell Biol
.
2022
;
14
(
5
):
mjac028
.
8.
Ajoolabady
A
,
Liu
S
,
Klionsky
DJ
,
Lip
GYH
,
Tuomilehto
J
,
Kavalakatt
S
, et al
.
ER stress in obesity pathogenesis and management
.
Trends Pharmacol Sci
.
2022
;
43
(
2
):
97
109
.
9.
Hashemi
M
,
Zandieh
MA
,
Ziaolhagh
S
,
Mojtabavi
S
,
Sadi
FH
,
Koohpar
ZK
, et al
.
Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: therapeutic targeting, challenges and future prospective
.
Biochim Biophys Acta Mol Basis Dis
.
2023
;
1869
(
5
):
166714
.
10.
Huo
JL
,
Feng
Q
,
Pan
S
,
Fu
WJ
,
Liu
Z
,
Liu
Z
.
Diabetic cardiomyopathy: early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions
.
Cell Death Discov
.
2023
;
9
(
1
):
256
.
11.
Avagimyan
A
,
Fogacci
F
,
Pogosova
N
,
Kakrurskiy
L
,
Kogan
E
,
Urazova
O
, et al
.
Diabetic cardiomyopathy: 2023 update by the international multidisciplinary board of experts
.
Curr Probl Cardiol
.
2024
;
49
(
1 Pt A
):
102052
.
12.
Ren
J
,
Ceylan-Isik
AF
.
Diabetic cardiomyopathy: do women differ from men
.
Endocrine
.
2004
;
25
(
2
):
73
83
.
13.
Tan
Y
,
Zhang
Z
,
Zheng
C
,
Wintergerst
KA
,
Keller
BB
,
Cai
L
.
Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence
.
Nat Rev Cardiol
.
2020
;
17
(
9
):
585
607
.
14.
Wang
D
,
Yin
Y
,
Wang
S
,
Zhao
T
,
Gong
F
,
Zhao
Y
, et al
.
FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
133
.
15.
ElSayed
NA
,
Aleppo
G
,
Aroda
VR
,
Bannuru
RR
,
Brown
FM
,
Bruemmer
D
, et al
.
4. Comprehensive medical evaluation and assessment of comorbidities: standards of care in diabetes-2023
.
Diabetes Care
.
2023
;
46
(
Suppl 1
):
S49
67
.
16.
Wang
K
,
Yuan
Y
,
Liu
X
,
Lau
WB
,
Zuo
L
,
Wang
X
, et al
.
Cardiac specific overexpression of mitochondrial omi/HtrA2 induces myocardial apoptosis and cardiac dysfunction
.
Sci Rep
.
2016
;
6
:
37927
.
17.
Liu
X
,
Lei
J
,
Wang
K
,
Ma
L
,
Liu
D
,
Du
Y
, et al
.
Mitochondrial omi/HtrA2 promotes caspase activation through cleavage of HAX-1 in aging heart
.
Rejuvenation Res
.
2017
;
20
(
3
):
183
92
.
18.
Huang
S
,
He
Q
,
Sun
X
,
Qu
Y
,
Abuduxukuer
R
,
Ren
J
, et al
.
DL-3-n-butylphthalide attenuates cerebral ischemia-reperfusion injury by inhibiting mitochondrial omi/HtrA2-mediated apoptosis
.
Curr Neurovasc Res
.
2023
;
20
(
1
):
101
11
.
19.
Bhuiyan
MS
,
Fukunaga
K
.
Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury
.
Cardiovasc Ther
.
2008 Fall
;
26
(
3
):
224
32
.
20.
Wang
K
,
Zhang
J
,
Liu
J
,
Tian
J
,
Wu
Y
,
Wang
X
, et al
.
Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death: Omi/HtrA2 and aged heart injury
.
Age
.
2013
;
35
(
3
):
733
46
.
21.
Aslam
M
,
Ladilov
Y
.
Emerging role of cAMP/AMPK signaling
.
Cells
.
2022
;
11
(
2
):
308
.
22.
Paskeh
MDA
,
Asadi
A
,
Mirzaei
S
,
Hashemi
M
,
Entezari
M
,
Raesi
R
, et al
.
Targeting AMPK signaling in ischemic/reperfusion injury: from molecular mechanism to pharmacological interventions
.
Cell Signal
.
2022
;
94
:
110323
.
23.
Yin
X
,
Guo
Z
,
Song
C
.
AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury
.
Mol Biol Rep
.
2024
;
51
(
1
):
257
.
24.
Zhou
H
,
Wang
S
,
Zhu
P
,
Hu
S
,
Chen
Y
,
Ren
J
.
Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission
.
Redox Biol
.
2018
;
15
:
335
46
.
25.
Wang
S
,
Kandadi
MR
,
Ren
J
.
Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy
.
Biochim Biophys Acta Mol Basis Dis
.
2019
;
1865
(
7
):
1865
75
.
26.
Gong
Y
,
Li
G
,
Tao
J
,
Wu
NN
,
Kandadi
MR
,
Bi
Y
, et al
.
Double knockout of Akt2 and AMPK accentuates high fat diet-induced cardiac anomalies through a cGAS-STING-mediated mechanism
.
Biochim Biophys Acta Mol Basis Dis
.
2020
;
1866
(
10
):
165855
.
27.
Ying
L
,
Wang
L
,
Guo
K
,
Hou
Y
,
Li
N
,
Wang
S
, et al
.
Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects
.
Nat Commun
.
2021
;
12
(
1
):
7256
.
28.
Salminen
A
,
Kaarniranta
K
,
Kauppinen
A
.
Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways
.
Ageing Res Rev
.
2016
;
28
:
15
26
.
29.
Li
Q
,
Li
J
,
Ren
J
.
UCF-101 mitigates streptozotocin-induced cardiomyocyte dysfunction: role of AMPK
.
Am J Physiol Endocrinol Metab
.
2009
;
297
(
4
):
E965
73
.
30.
Nakashima
Y
,
Tanabe
K
,
Mifune
T
,
Nakadoi
T
,
Hayashi
H
,
Nakagami
H
, et al
.
Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy
.
Am J Physiol Renal Physiol
.
2024
;
326
(
6
):
F1054
65
.
31.
Wu
JY
,
Li
M
,
Cao
LJ
,
Sun
ML
,
Chen
D
,
Ren
HG
, et al
.
Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice
.
Acta Pharmacol Sin
.
2015
;
36
(
9
):
1043
52
.
32.
Peng
H
,
Qin
X
,
Chen
S
,
Ceylan
AF
,
Dong
M
,
Lin
Z
, et al
.
Parkin deficiency accentuates chronic alcohol intake-induced tissue injury and autophagy defects in brain, liver and skeletal muscle
.
Acta Biochim Biophys Sin
.
2020
;
52
(
6
):
665
74
.
33.
Wang
S
,
Tao
J
,
Chen
H
,
Kandadi
MR
,
Sun
M
,
Xu
H
, et al
.
Ablation of Akt2 and AMPKα2 rescues high fat diet-induced obesity and hepatic steatosis through Parkin-mediated mitophagy
.
Acta Pharm Sin B
.
2021
;
11
(
11
):
3508
26
.
34.
Yang
M
,
Wang
S
,
Fu
S
,
Wu
NN
,
Xu
X
,
Sun
S
, et al
.
Deletion of the E3 ubiquitin ligase, Parkin, exacerbates chronic alcohol intake-induced cardiomyopathy through an Ambra1-dependent mechanism
.
Br J Pharmacol
.
2021
;
178
(
4
):
964
82
.
35.
Pei
Z
,
Xiong
Y
,
Jiang
S
,
Guo
R
,
Jin
W
,
Tao
J
, et al
.
Heavy metal scavenger metallothionein rescues against cold stress-evoked myocardial contractile anomalies through regulation of mitophagy
.
Cardiovasc Toxicol
.
2024
;
24
(
2
):
85
101
.
36.
Ren
J
,
Wold
LE
.
Measurement of cardiac mechanical function in isolated ventricular myocytes from rats and mice by computerized video-based imaging
.
Biol Proced Online
.
2001
;
3
:
43
53
.
37.
Li
Q
,
Hueckstaedt
LK
,
Ren
J
.
The protease inhibitor UCF-101 ameliorates streptozotocin-induced mouse cardiomyocyte contractile dysfunction in vitro: role of AMP-activated protein kinase
.
Exp Physiol
.
2009
;
94
(
9
):
984
94
.
38.
Pang
J
,
Peng
H
,
Wang
S
,
Xu
X
,
Xu
F
,
Wang
Q
, et al
.
Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy
.
Biochim Biophys Acta Mol Basis Dis
.
2019
;
1865
(
6
):
1627
41
.
39.
Liang
X
,
Wang
S
,
Wang
L
,
Ceylan
AF
,
Ren
J
,
Zhang
Y
.
Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission
.
Pharmacol Res
.
2020
;
157
:
104846
.
40.
Ceylan-Isik
AF
,
Wu
S
,
Li
Q
,
Li
SY
,
Ren
J
.
High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus
.
J Appl Physiol
.
2006
;
100
(
1
):
150
6
.
41.
Turdi
S
,
Fan
X
,
Li
J
,
Zhao
J
,
Huff
AF
,
Du
M
, et al
.
AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction
.
Aging Cell
.
2010
;
9
(
4
):
592
606
.
42.
Wang
S
,
Chen
X
,
Zeng
B
,
Xu
X
,
Chen
H
,
Zhao
P
, et al
.
Knockout of macrophage migration inhibitory factor accentuates side-stream smoke exposure-induced myocardial contractile dysfunction through dysregulated mitophagy
.
Pharmacol Res
.
2020
;
157
:
104828
.
43.
Ren
J
,
Dominguez
LJ
,
Sowers
JR
,
Davidoff
AJ
.
Metformin but not glyburide prevents high glucose-induced abnormalities in relaxation and intracellular Ca2+ transients in adult rat ventricular myocytes
.
Diabetes
.
1999
;
48
(
10
):
2059
65
.
44.
Ren
J
,
Wu
NN
,
Wang
S
,
Sowers
JR
,
Zhang
Y
.
Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications
.
Physiol Rev
.
2021
;
101
(
4
):
1745
807
.
45.
Richter
C
,
Hinkel
R
.
Research(‘s) sweet hearts: experimental biomedical models of diabetic cardiomyopathy
.
Front Cardiovasc Med
.
2021
;
8
:
703355
.
46.
Chen
L
,
Yin
Z
,
Qin
X
,
Zhu
X
,
Chen
X
,
Ding
G
, et al
.
CD74 ablation rescues type 2 diabetes mellitus-induced cardiac remodeling and contractile dysfunction through pyroptosis-evoked regulation of ferroptosis
.
Pharmacol Res
.
2022
;
176
:
106086
.
47.
Prakoso
D
,
De Blasio
MJ
,
Tate
M
,
Ritchie
RH
.
Current landscape of preclinical models of diabetic cardiomyopathy
.
Trends Pharmacol Sci
.
2022
;
43
(
11
):
940
56
.
48.
Jin
W
,
Tu
F
,
Dong
F
,
Deng
Q
,
Abudureyimu
M
,
Yu
W
, et al
.
Interplay between obesity and aging on myocardial geometry and function: role of leptin-STAT3-stress signaling
.
Biochim Biophys Acta Gen Subj
.
2023
;
1867
(
2
):
130281
.
49.
Zhang
X
,
Zhao
Y
,
Guo
D
,
Luo
M
,
Zhang
Q
,
Zhang
L
, et al
.
Exercise improves heart function after myocardial infarction: the merits of AMPK
.
Cardiovasc Drugs Ther
.
2024
.
50.
Zhang
H
,
Liu
B
,
Li
T
,
Zhu
Y
,
Luo
G
,
Jiang
Y
, et al
.
AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia
.
Int J Mol Med
.
2018
;
41
(
1
):
69
76
.
51.
Li
P
,
Wang
J
,
Zhao
X
,
Ru
J
,
Tian
T
,
An
Y
, et al
.
PTEN inhibition attenuates endothelial cell apoptosis in coronary heart disease via modulating the AMPK-CREB-Mfn2-mitophagy signaling pathway
.
J Cell Physiol
.
2020
;
235
(
5
):
4878
89
.
52.
Bai
X
,
Zhang
Z
,
Li
X
,
Yang
Y
,
Ding
S
.
FUNDC1: an emerging mitochondrial and MAMs protein for mitochondrial quality control in heart diseases
.
Int J Mol Sci
.
2023
;
24
(
11
):
9151
.
You do not currently have access to this content.