Introduction: Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has a protective effect on acute coronary syndrome (ACS). However, most studies have shown that this protective effect is based on a decrease in low-density lipoprotein cholesterol, while other mechanisms remain limited. This study aimed to determine whether PCSK9i can improve the prognosis of ACS patients by protecting endothelial function. Methods: A total of 113 ACS patients were enrolled and randomly assigned to PCSK9i group (PCSK9i combined with statins) and control group (statins only). Blood lipids and endothelial function indicators were measured and analyzed 6 weeks before and after treatment. The effect of PCSK9i on the expression and secretion of endothelial function indicators in vascular endothelial cells were studied by cell experiments. Results: After 6 weeks of treatment, endothelial function indicators such as nitric oxide (NO), thrombomodulin, intercellular cell adhesion molecule-1, endothelin-1, and flow-mediated vasodilation were significantly improved in PCSK9i group compared with control group. Only the changes of NO and von Willebrand factor were associated with blood lipid levels, whereas the changes of other endothelial function indicators were not significantly associated with blood lipid levels. PCSK9i reduced the incidence of major adverse cardiovascular events in patients with ACS compared to those in the control group. In cell experiments, PCSK9i treatment significantly ameliorated LPS induced endothelial injury in HUVECs. Conclusion: PCSK9i can protect vascular endothelial function partly independently of its lipid-lowering effect and ameliorate the prognosis of patients with ACS within 6 weeks. This mechanism may involve heat shock transcription factor 1/heat shock proteins -related signaling pathways. Early use of PCSK9i in patients with ACS should be strongly considered in clinical practice.

1.
Eisen
A
,
Giugliano
RP
,
Braunwald
E
.
Updates on acute coronary syndrome: a review
.
JAMA Cardiol
.
2016
;
1
(
6
):
718
30
.
2.
Nardin
M
,
Verdoia
M
,
Laera
N
,
Cao
D
,
De Luca
G
.
New insights into pathophysiology and new risk factors for ACS
.
J Clin Med
.
2023
;
12
(
8
):
2883
.
3.
Boulos
PK
,
Messenger
JC
,
Waldo
SW
.
Readmission after ACS: burden, epidemiology, and mitigation
.
Curr Cardiol Rep
.
2022
;
24
(
7
):
807
15
.
4.
Du
L
,
Cheng
Z
,
Zhang
Y
,
Li
Y
,
Mei
D
.
The impact of medication adherence on clinical outcomes of coronary artery disease: a meta-analysis
.
Eur J Prev Cardiol
.
2017
;
24
(
9
):
962
70
.
5.
Kaasenbrood
L
,
Boekholdt
SM
,
van der Graaf
Y
,
Ray
KK
,
Peters
RJ
,
Kastelein
JJ
, et al
.
Distribution of estimated 10-year risk of recurrent vascular events and residual risk in a secondary prevention population
.
Circulation
.
2016
;
134
(
19
):
1419
29
.
6.
Badimon
L
,
Vilahur
G
.
Thrombosis formation on atherosclerotic lesions and plaque rupture
.
J Intern Med
.
2014
;
276
(
6
):
618
32
.
7.
Stone
GW
,
Maehara
A
,
Lansky
AJ
,
de Bruyne
B
,
Cristea
E
,
Mintz
GS
, et al
.
A prospective natural-history study of coronary atherosclerosis
.
N Engl J Med
.
2011
;
364
(
3
):
226
35
.
8.
Ahmadi
A
,
Argulian
E
,
Leipsic
J
,
Newby
DE
,
Narula
J
.
From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review
.
J Am Coll Cardiol
.
2019
;
74
(
12
):
1608
17
.
9.
Dhaun
N
,
Webb
DJ
.
Endothelins in cardiovascular biology and therapeutics
.
Nat Rev Cardiol
.
2019
;
16
(
8
):
491
502
.
10.
Madigan
M
,
Zuckerbraun
B
.
Therapeutic potential of the nitrite-generated NO pathway in vascular dysfunction
.
Front Immunol
.
2013
;
4
:
174
.
11.
Cyr
AR
,
Huckaby
LV
,
Shiva
SS
,
Zuckerbraun
BS
.
Nitric oxide and endothelial dysfunction
.
Crit Care Clin
.
2020
;
36
(
2
):
307
21
.
12.
McEniery
CM
,
Qasem
A
,
Schmitt
M
,
Avolio
AP
,
Cockcroft
JR
,
Wilkinson
IB
.
Endothelin-1 regulates arterial pulse wave velocity in vivo
.
J Am Coll Cardiol
.
2003
;
42
(
11
):
1975
81
.
13.
Choi
KA
,
Kim
JH
,
Ryu
K
,
Kaushik
N
.
Current nanomedicine for targeted vascular disease treatment: trends and perspectives
.
Int J Mol Sci
.
2022
;
23
(
20
):
12397
.
14.
Bentzon
JF
,
Otsuka
F
,
Virmani
R
,
Falk
E
.
Mechanisms of plaque formation and rupture
.
Circ Res
.
2014
;
114
(
12
):
1852
66
.
15.
Xue
J
,
Zhang
Z
,
Sun
Y
,
Jin
D
,
Guo
L
,
Li
X
, et al
.
Research progress and molecular mechanisms of endothelial cells inflammation in vascular-related diseases
.
J Inflamm Res
.
2023
;
16
:
3593
617
.
16.
Sabatine
MS
.
PCSK9 inhibitors: clinical evidence and implementation
.
Nat Rev Cardiol
.
2019
;
16
(
3
):
155
65
.
17.
Sabatine
MS
,
Giugliano
RP
,
Keech
AC
,
Honarpour
N
,
Wiviott
SD
,
Murphy
SA
, et al
.
Evolocumab and clinical outcomes in patients with cardiovascular disease
.
N Engl J Med
.
2017
;
376
(
18
):
1713
22
.
18.
Schwartz
GG
,
Steg
PG
,
Szarek
M
,
Bhatt
DL
,
Bittner
VA
,
Diaz
R
, et al
.
Alirocumab and cardiovascular outcomes after acute coronary syndrome
.
N Engl J Med
.
2018
;
379
(
22
):
2097
107
.
19.
Ugovšek
S
,
Šebeštjen
M
.
Non-lipid effects of PCSK9 monoclonal antibodies on vessel wall
.
J Clin Med
.
2022
;
11
(
13
):
3625
.
20.
Byrne
RA
,
Rossello
X
,
Coughlan
JJ
,
Barbato
E
,
Berry
C
,
Chieffo
A
, et al
.
2023 ESC Guidelines for the management of acute coronary syndromes
.
Eur Heart J
.
2023
;
44
(
38
):
3720
826
.
21.
Cen
M
,
Ouyang
W
,
Zhang
W
,
Yang
L
,
Lin
X
,
Dai
M
, et al
.
MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism
.
Redox Biol
.
2021
;
41
:
101936
.
22.
Wang
L
,
Cao
Y
,
Gorshkov
B
,
Zhou
Y
,
Yang
Q
,
Xu
J
, et al
.
Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia
.
Pharmacol Res
.
2019
;
146
:
104292
.
23.
Huang
L
,
Li
Y
,
Cheng
Z
,
Lv
Z
,
Luo
S
,
Xia
Y
.
PCSK9 promotes endothelial dysfunction during sepsis via the TLR4/MyD88/NF-κB and NLRP3 pathways
.
Inflammation
.
2023
;
46
(
1
):
115
28
.
24.
Xing
JH
,
Li
R
,
Gao
YQ
,
Wang
MY
,
Liu
YZ
,
Hong
J
, et al
.
NLRP3 inflammasome mediate palmitate-induced endothelial dysfunction
.
Life Sci
.
2019
;
239
:
116882
.
25.
D'Onofrio
N
,
Prattichizzo
F
,
Marfella
R
,
Sardu
C
,
Martino
E
,
Scisciola
L
, et al
.
SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells
.
Theranostics
.
2023
;
13
(
2
):
531
42
.
26.
Martino
E
,
D’Onofrio
N
,
Balestrieri
A
,
Mele
L
,
Sardu
C
,
Marfella
R
, et al
.
MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4
.
Cell Mol Biol Lett
.
2023
;
28
(
1
):
66
.
27.
Zulkapli
R
,
Muid
SA
,
Wang
SM
,
Nawawi
H
.
PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells
.
Int J Mol Sci
.
2023
;
24
(
6
):
5098
.
28.
Bhatt
DL
,
Lopes
RD
,
Harrington
RA
.
Diagnosis and treatment of acute coronary syndromes: a review
.
Jama
.
2022
;
327
(
7
):
662
75
.
29.
Jernberg
T
,
Hasvold
P
,
Henriksson
M
,
Hjelm
H
,
Thuresson
M
,
Janzon
M
.
Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective
.
Eur Heart J
.
2015
;
36
(
19
):
1163
70
.
30.
Gallego-Colon
E
,
Daum
A
,
Yosefy
C
.
Statins and PCSK9 inhibitors: a new lipid-lowering therapy
.
Eur J Pharmacol
.
2020
;
878
:
173114
.
31.
Kasichayanula
S
,
Grover
A
,
Emery
MG
,
Gibbs
MA
,
Somaratne
R
,
Wasserman
SM
, et al
.
Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor
.
Clin Pharmacokinet
.
2018
;
57
(
7
):
769
79
.
32.
Navarese
EP
,
Kolodziejczak
M
,
Kereiakes
DJ
,
Tantry
US
,
O'Connor
C
,
Gurbel
PA
.
Proprotein convertase subtilisin/kexin type 9 monoclonal antibodies for acute coronary syndrome: a narrative review
.
Ann Intern Med
.
2016
;
164
(
9
):
600
7
.
33.
Paciullo
F
,
Momi
S
,
Gresele
P
.
PCSK9 in haemostasis and thrombosis: possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention
.
Thromb Haemost
.
2019
;
119
(
3
):
359
67
.
34.
Momtazi-Borojeni
AA
,
Sabouri-Rad
S
,
Gotto
AM
,
Pirro
M
,
Banach
M
,
Awan
Z
, et al
.
PCSK9 and inflammation: a review of experimental and clinical evidence
.
Eur Heart J Cardiovasc Pharmacother
.
2019
;
5
(
4
):
237
45
.
35.
Ziogos
E
,
Chelko
SP
,
Harb
T
,
Engel
M
,
Vavuranakis
MA
,
Landim-Vieira
M
, et al
.
Platelet activation and endothelial dysfunction biomarkers in acute coronary syndrome: the impact of PCSK9 inhibition
.
Eur Heart J Cardiovasc Pharmacother
.
2023
;
9
(
7
):
636
46
.
36.
Zhang
Y
,
Zhang
Y
,
Zhang
B
,
Chen
Z
,
Wei
Y
,
Chen
P
, et al
.
Early initiation of evolocumab treatment in Chinese patients with acute coronary syndrome undergoing percutaneous coronary intervention
.
Clin Ther
.
2022
;
44
(
6
):
901
12
.
37.
Mach
F
,
Baigent
C
,
Catapano
AL
,
Koskinas
KC
,
Casula
M
,
Badimon
L
, et al
.
2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk
.
Eur Heart J
.
2020
;
41
(
1
):
111
88
.
38.
Leucker
TM
,
Gerstenblith
G
,
Schär
M
,
Brown
TT
,
Jones
SR
,
Afework
Y
, et al
.
Evolocumab, a PCSK9-monoclonal antibody, rapidly reverses coronary artery endothelial dysfunction in people living with HIV and people with dyslipidemia
.
J Am Heart Assoc
.
2020
;
9
(
14
):
e016263
.
39.
Di Minno
A
,
Gentile
M
,
Iannuzzo
G
,
Calcaterra
I
,
Tripaldella
M
,
Porro
B
, et al
.
Endothelial function improvement in patients with familial hypercholesterolemia receiving PCSK-9 inhibitors on top of maximally tolerated lipid lowering therapy
.
Thromb Res
.
2020
;
194
:
229
36
.
40.
Spence
JD
,
Urquhart
BL
.
Cerebrovascular disease, cardiovascular disease, and chronic kidney disease: interplays and influences
.
Curr Neurol Neurosci Rep
.
2022
;
22
(
11
):
757
66
.
41.
Deminice
R
,
Silva
TC
,
de Oliveira
VH
.
Elevated homocysteine levels in human immunodeficiency virus-infected patients under antiretroviral therapy: a meta-analysis
.
World J Virol
.
2015
;
4
(
2
):
147
55
.
42.
Huang
A
,
Pinto
JT
,
Froogh
G
,
Kandhi
S
,
Qin
J
,
Wolin
MS
, et al
.
Role of homocysteinylation of ACE in endothelial dysfunction of arteries
.
Am J Physiol Heart Circ Physiol
.
2015
;
308
(
2
):
H92
100
.
43.
Maruyama
I
,
Bell
CE
,
Majerus
PW
.
Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta
.
J Cel Biol
.
1985
;
101
(
2
):
363
71
.
44.
Loghmani
H
,
Conway
EM
.
Exploring traditional and nontraditional roles for thrombomodulin
.
Blood
.
2018
;
132
(
2
):
148
58
.
45.
Weiler
H
,
Isermann
BH
.
Thrombomodulin
.
J Thromb Haemost
.
2003
;
1
(
7
):
1515
24
.
46.
Chen
TP
,
Lee
HL
,
Huang
YH
,
Hsieh
MJ
,
Chiang
WL
,
Kuo
WH
, et al
.
Association of intercellular adhesion molecule-1 single nucleotide polymorphisms with hepatocellular carcinoma susceptibility and clinicopathologic development
.
Tumour Biol
.
2016
;
37
(
2
):
2067
74
.
47.
Barton
M
,
Yanagisawa
M
.
Endothelin: 30 Years from discovery to therapy
.
Hypertens (Dallas, Tex
.
1979). 2019
;
74
(
6
):
1232
65
.
48.
Vaughan
DE
.
PAI-1 and atherothrombosis
.
J Thromb Haemost
.
2005
;
3
(
8
):
1879
83
.
49.
Manz
XD
,
Bogaard
HJ
,
Aman
J
.
Regulation of VWF (von Willebrand factor) in inflammatory thrombosis
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
11
):
1307
20
.
50.
Heiss
C
,
Rodriguez-Mateos
A
,
Bapir
M
,
Skene
SS
,
Sies
H
,
Kelm
M
.
Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health
.
Cardiovascular Research
.
2023
;
119
(
1
):
283
93
.
51.
Tomiyama
H
,
Kohro
T
,
Higashi
Y
,
Takase
B
,
Suzuki
T
,
Ishizu
T
, et al
.
Reliability of measurement of endothelial function across multiple institutions and establishment of reference values in Japanese
.
Atherosclerosis
.
2015
;
242
(
2
):
433
42
.
52.
Maruhashi
T
,
Kajikawa
M
,
Kishimoto
S
,
Hashimoto
H
,
Takaeko
Y
,
Yamaji
T
, et al
.
Diagnostic criteria of flow-mediated vasodilation for normal endothelial function and nitroglycerin-induced vasodilation for normal vascular smooth muscle function of the brachial artery
.
J Am Heart Assoc
.
2020
;
9
(
2
):
e013915
.
53.
Landmesser
U
,
Bahlmann
F
,
Mueller
M
,
Spiekermann
S
,
Kirchhoff
N
,
Schulz
S
, et al
.
Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans
.
Circulation
.
2005
;
111
(
18
):
2356
63
.
54.
Dogra
GK
,
Watts
GF
,
Herrmann
S
,
Thomas
MA
,
Irish
AB
.
Statin therapy improves brachial artery endothelial function in nephrotic syndrome
.
Kidney Int
.
2002
;
62
(
2
):
550
7
.
55.
Bianconi
V
,
Mannarino
MR
,
Cosentini
E
,
Figorilli
F
,
Colangelo
C
,
Cellini
G
, et al
.
The impact of statin therapy on in-hospital prognosis and endothelial function of patients at high-to-very high cardiovascular risk admitted for COVID-19
.
J Med Virol
.
2023
;
95
(
3
):
e28678
.
56.
Zhang
L
,
Gong
D
,
Li
S
,
Zhou
X
.
Meta-analysis of the effects of statin therapy on endothelial function in patients with diabetes mellitus
.
Atherosclerosis
.
2012
;
223
(
1
):
78
85
.
57.
Katsiki
N
,
Reiner
Ž
,
Tedeschi Reiner
E
,
Al-Rasadi
K
,
Pirro
M
,
Mikhailidis
DP
, et al
.
Improvement of endothelial function by pitavastatin: a meta-analysis
.
Expert Opin Pharmacother
.
2018
;
19
(
3
):
279
86
.
58.
Martínez-González
J
,
Badimon
L
.
Influence of statin use on endothelial function: from bench to clinics
.
Curr Pharm Des
.
2007
;
13
(
17
):
1771
86
.
59.
Omer
MA
,
Tyler
JM
,
Henry
TD
,
Garberich
R
,
Sharkey
SW
,
Schmidt
CW
, et al
.
Clinical characteristics and outcomes of STEMI patients with cardiogenic shock and cardiac arrest
.
JACC Cardiovasc Interv
.
2020
;
13
(
10
):
1211
9
.
60.
Hao
Y
,
Yang
YL
,
Wang
YC
,
Li
J
.
Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome
.
Int Heart J
.
2022
;
63
(
4
):
669
77
.
61.
Karki
P
,
Birukov
KG
.
Lipid mediators in the regulation of endothelial barriers
.
Tissue barriers
.
2018
;
6
(
1
):
e1385573
.
62.
Goldberg
IJ
,
Bornfeldt
KE
.
Lipids and the endothelium: bidirectional interactions
.
Curr Atheroscler Rep
.
2013
;
15
(
11
):
365
.
63.
Ouweneel
AB
,
Van Eck
M
.
Lipoproteins as modulators of atherothrombosis: from endothelial function to primary and secondary coagulation
.
Vascul Pharmacol
.
2016
;
82
:
1
10
.
64.
Sugiura
T
,
Dohi
Y
,
Yamashita
S
,
Yamamoto
K
,
Wakamatsu
Y
,
Tanaka
S
, et al
.
Impact of lipid profile and high blood pressure on endothelial damage
.
J Clin Lipidol
.
2011
;
5
(
6
):
460
6
.
65.
Yang
PT
,
Li
Y
,
Wang
JG
,
Zhang
LJ
,
Yang
SQ
,
Tang
L
, et al
.
The association of remnant cholesterol with endothelial dysfunction and subclinical atherosclerosis in a check-up population in China
.
J Atheroscler Thromb
.
2023
;
30
(
6
):
684
97
.
66.
Schremmer
J
,
Busch
L
,
Baasen
S
,
Heinen
Y
,
Sansone
R
,
Heiss
C
, et al
.
Chronic PCSK9 inhibitor therapy leads to sustained improvements in endothelial function, arterial stiffness, and microvascular function
.
Microvasc Res
.
2023
;
148
:
104513
.
67.
Philpott
AC
,
Hubacek
J
,
Sun
YC
,
Hillard
D
,
Anderson
TJ
.
Niacin improves lipid profile but not endothelial function in patients with coronary artery disease on high dose statin therapy
.
Atherosclerosis
.
2013
;
226
(
2
):
453
8
.
68.
Mitani
H
,
Egashira
K
,
Ohashi
N
,
Yoshikawa
M
,
Niwa
S
,
Nonomura
K
, et al
.
Preservation of endothelial function by the HMG-CoA reductase inhibitor fluvastatin through its lipid-lowering independent antioxidant properties in atherosclerotic rabbits
.
Pharmacology
.
2003
;
68
(
3
):
121
30
.
69.
Steinberg
FM
,
Guthrie
NL
,
Villablanca
AC
,
Kumar
K
,
Murray
MJ
.
Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women
.
Am J Clin Nutr
.
2003
;
78
(
1
):
123
30
.
70.
Gomez-Pastor
R
,
Burchfiel
ET
,
Thiele
DJ
.
Regulation of heat shock transcription factors and their roles in physiology and disease
.
Nat Rev Mol Cel Biol
.
2018
;
19
(
1
):
4
19
.
71.
Martindale
JL
,
Holbrook
NJ
.
Cellular response to oxidative stress: signaling for suicide and survival
.
J Cel Physiol
.
2002
;
192
(
1
):
1
15
.
72.
Metzler
B
,
Abia
R
,
Ahmad
M
,
Wernig
F
,
Pachinger
O
,
Hu
Y
, et al
.
Activation of heat shock transcription factor 1 in atherosclerosis
.
Am J Pathol
.
2003
;
162
(
5
):
1669
76
.
73.
Uchiyama
T
,
Atsuta
H
,
Utsugi
T
,
Oguri
M
,
Hasegawa
A
,
Nakamura
T
, et al
.
HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function)
.
Atherosclerosis
.
2007
;
190
(
2
):
321
9
.
74.
Wang
D
,
He
S
,
Zhong
G
,
Meng
J
,
Bi
Q
,
Tu
R
.
Effects of heat shock protein 90 on complement activation in myocardial ischemia/reperfusion injury after pioglitazone preconditioning
.
Adv Clin Exp Med
.
2023
;
32
(
12
):
1401
12
.
75.
Zhang
XY
,
Huang
Z
,
Li
QJ
,
Zhong
GQ
,
Meng
JJ
,
Wang
DX
, et al
.
Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning
.
Clin Hemorheol Microcirc
.
2020
;
76
(
1
):
51
62
.
76.
Cheng
XF
,
He
ST
,
Zhong
GQ
,
Meng
JJ
,
Wang
M
,
Bi
Q
, et al
.
Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation
.
BMC Cardiovasc Disord
.
2023
;
23
(
1
):
58
.
77.
Uchiyama
T
,
Atsuta
H
,
Utsugi
T
,
Ohyama
Y
,
Nakamura
T
,
Nakai
A
, et al
.
Simvastatin induces heat shock factor 1 in vascular endothelial cells
.
Atherosclerosis
.
2006
;
188
(
2
):
265
73
.
You do not currently have access to this content.