Introduction: Administration of vancomycin dose by continuous infusion (CI) according to population pharmacokinetic (Pop Pk) models is highly recommended in critically ill patients who exhibit pathophysiological changes. Objective: The objective of this study was to develop and validate a Pop Pk model of vancomycin administered by CI in critically ill patients with normal and impaired renal functions. Methods: The Pop Pk study was performed using a nonparametric approach (Pmetrics*). The influence of covariates (gender, age, weight, height, and creatinine clearance [Cr-Cl]) was tested on the model’s Pk parameters. The performance of the final model was assessed using an external dataset. Results: A one-compartment model (volume of distribution [Vd], elimination from compartment [Ke]) was found to show a good prediction performance. The influence of covariates has shown that age and Cr-Cl affected significantly Vd and Ke, respectively. The distribution of simulated vancomycin clearance (CLv) according to different renal function levels showed a negative correlation between CLv and the severity of the renal impairment. The internal validation of the final model showed that the plot of individual-predicted concentration versus observed concentration resulted in r2 = 0.86 in the final model. The external validation of the final model showed an acceptable predictive performance. Conclusion: We developed a Pop Pk model for vancomycin administered by CI in critically ill patients. A significant impact of Cr-Cl and different stages of renal failure on CLv has been demonstrated. The establishment of an individualized proposal dose based on this model may be helpful to achieve the target range which is critical in optimizing the efficacy and safety of this antibiotic.

1.
Escobar
L
,
Andresen
M
,
Downey
P
,
Gai
MN
,
Regueira
T
,
Bórquez
T
, et al
.
Population pharmacokinetics and dose simulation of vancomycin in critically ill patients during high-volume haemofiltration
.
Int J Antimicrob Agents
.
2014
;
44
(
2
):
163
7
.
2.
Monteiro
JF
,
Hahn
SR
,
Gonçalves
J
,
Fresco
P
.
Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations
.
Pharmacol Res Perspect
.
2018
;
6
:
e00420
.
3.
Álvarez
R
,
López Cortés
LE
,
Molina
J
,
Cisneros
JM
,
Pachón
J
.
Optimizing the clinical use of vancomycin
.
Antimicrob Agents Chemother
.
2016
;
60
(
5
):
2601
9
.
4.
Finfer
S
,
Bellomo
R
,
Lipman
J
,
French
C
,
Dobb
G
,
Myburgh
J
.
Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units
.
Intensive Care Med
.
2004
;
30
(
4
):
589
96
.
5.
Rybak
M
,
Lomaestro
B
,
Rotschafer
JC
,
Moellering
R
Jr
,
Craig
W
,
Billeter
M
, et al
.
Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system Pharmacists, the infectious Diseases society of America, and the society of infectious Diseases Pharmacists
.
Am J Health Syst Pharm
.
2009
;
66
(
1
):
82
98
.
6.
Ye
ZK
,
Tang
HL
,
Zhai
SD
.
Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta-analysis
.
PLoS One
.
2013
;
8
:
e77169
.
7.
Cataldo
MA
,
Tacconelli
E
,
Grilli
E
,
Pea
F
,
Petrosillo
N
.
Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis
.
J Antimicrob Chemother
.
2012
;
67
(
1
):
17
24
.
8.
Wysocki
M
,
Delatour
F
,
Faurisson
F
,
Rauss
A
,
Pean
Y
,
Misset
B
, et al
.
Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study
.
Antimicrob Agents Chemother
.
2001
;
45
(
9
):
2460
7
.
9.
Ye
ZK
,
Chen
YL
,
Chen
K
,
Zhang
XL
,
Du
GH
,
He
B
, et al
.
Therapeutic drug monitoring of vancomycin: a guideline of the division of therapeutic drug monitoring, Chinese pharmacological society
.
J Antimicrob Chemother
.
2016
;
71
(
11
):
3020
5
.
10.
Rybak
MJ
,
Le
J
,
Lodise
TP
,
Levine
DP
,
Bradley
JS
,
Liu
C
, et al
.
Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system Pharmacists, the infectious Diseases society of America, the pediatric infectious Diseases society, and the society of infectious Diseases Pharmacists
.
Am J Health Syst Pharm
.
2020
;
77
(
11
):
835
64
.
11.
Aljutayli
A
,
Marsot
A
,
Nekka
F
.
An update on population pharmacokinetic analyses of vancomycin, Part I: in adults
.
Clin Pharmacokinet
.
2020
;
59
(
6
):
671
98
.
12.
Cunio
CB
,
Uster
DW
,
Carland
JE
,
Buscher
H
,
Liu
Z
,
Brett
J
, et al
.
Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients
.
Clin Microbiol Infection
.
2021
;
27
(
5
):
783.e7
14
.
13.
Cockcroft
DW
,
Gault
MH
.
Prediction of creatinine clearance from serum creatinine
.
Nephron
.
1976
;
16
(
1
):
31
41
.
14.
Colin
PJ
,
Jonckheere
S
,
Struys
MMRF
.
Target-controlled continuous infusion for antibiotic dosing: proof-of-principle in an in-silico vancomycin trial in intensive care unit patients
.
Clin Pharmacokinet
.
2018
;
57
(
11
):
1435
47
.
15.
Sheiner
LB
,
Beal
SL
.
Some suggestions for measuring predictive performance
.
J Pharmacokinet Biopharm
.
1981
;
9
(
4
):
503
12
.
16.
Roberts
JA
,
Taccone
FS
,
Udy
AA
,
Vincent
JL
,
Jacobs
F
,
Lipman
J
.
Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens
.
Antimicrob Agents Chemother
.
2011
;
55
(
6
):
2704
9
.
17.
Zhao
W
,
Lopez
E
,
Biran
V
,
Durrmeyer
X
,
Fakhoury
M
,
Jacqz-Aigrain
E
.
Vancomycin continuous infusion in neonates: dosing optimisation and therapeutic drug monitoring
.
Arch Dis Child
.
2013
;
98
(
6
):
449
53
.
18.
Medellín-Garibay
SE
,
Romano-Moreno
S
,
Tejedor-Prado
P
,
Rubio-Álvaro
N
,
Rueda-Naharro
A
,
Blasco-Navalpotro
MA
, et al
.
IInfluence of mechanical ventilation on the pharmacokinetics of vancomycin administered by continuous infusion in critically ill patientsuence of mechanical ventilation on the pharmacokinetics of vancomycin administered by continuous infusion in critically ill patients
.
Antimicrob Agents Chemother
.
2017
;
61
(
12
):
10
.
19.
Avedissian
SN
,
Bradley
E
,
Zhang
D
,
Bradley
JS
,
Nazer
LH
,
Tran
TM
, et al
.
Augmented renal clearance using population- based pharmacokinetic modeling in critically ill pediatric patients
.
Pediatr Crit Care Med
.
2017
;
7
.
20.
Genuini
M
,
Oualha
M
,
Bouazza
N
,
Moulin
F
,
Treluyer
JM
,
Lesage
F
, et al
.
Achievement of therapeutic vancomycin exposure with continuous infusion in critically ill children
.
Pediatr Crit Care Med
.
2018
;
19
(
6
):
e263
9
.
21.
Vu
DH
,
Nguyen
DA
,
Delattre
IK
,
Ho
TT
,
Do
HG
,
Pham
HN
, et al
.
Determination of optimal loading and maintenance doses for continuous infusion of vancomycin in critically ill patients: population pharmacokinetic modelling and simulations for improved dosing schemes
.
Int J Antimicrob Agents
.
2019
;
54
(
6
):
702
8
.
22.
Garreau
R
,
Falquet
B
,
Mioux
L
,
Bourguignon
L
,
Ferry
T
,
Tod
M
, et al
.
Population pharmacokinetics and dosing simulation of vancomycin administered by continuous injection in critically ill patient
.
Antibiot
.
2021
;
10
(
10
):
1228
.
23.
Kovacevic
T
,
Miljkovic
B
,
Kovacevic
P
,
Dragic
S
,
Momcicevic
D
,
Avram
S
, et al
.
Population pharmacokinetic model of Vancomycin based on therapeutic drug monitoring data in critically ill septic patients
.
J Crit Care
.
2020
;
55
:
116
21
.
24.
van Maarseveen
EM
,
Gipmans
S
,
Vasbinder
E
,
Petjak
M
,
van Zanten
ARH
.
Switching from intermittent to continuous infusion of vancomycin in critically ill patients: toward a more robust exposure
.
Ther Drug Monit
.
2016
;
38
(
3
):
398
401
.
25.
Berthaud
R
,
Benaboud
S
,
Hirt
D
,
Genuini
M
,
Oualha
M
,
Castelle
M
, et al
.
Early bayesian dose adjustment of vancomycin continuous infusion in children: a randomized controlled trial
.
Antimicrob Agents Chemother
.
2019
;
63
(
12
):
e01102-19
.
26.
Purdie
FP
.
Guidance for Industry
.
26
.
27.
Smith
BS
,
Yogaratnam
D
,
Levasseur-Franklin
KE
,
Forni
A
,
Fong
J
.
Introduction to drug pharmacokinetics in the critically ill patient
.
Chest
.
2012
;
141
(
5
):
1327
36
.
28.
Jeurissen
A
,
Sluyts
I
,
Rutsaert
R
.
A higher dose of vancomycin in continuous infusion is needed in critically ill patients
.
Int J Antimicrob Agents
.
2011
;
37
(
1
):
75
7
.
29.
Minkutė
R
,
Briedis
V
,
Steponavičiūtė
R
,
Vitkauskienė
A
,
Mačiulaitis
R
.
Augmented renal clearance--an evolving risk factor to consider during the treatment with vancomycin
.
J Clin Pharm Ther
.
2013
;
38
(
6
):
462
7
.
30.
Udy
AA
,
Roberts
JA
,
Lipman
J
.
Implications of augmented renal clearance in critically ill patients
.
Nat Rev Nephrol
.
2011
;
7
(
9
):
539
43
.
31.
Cook
AM
,
Hatton‐Kolpek
J
.
Augmented renal clearance
.
Pharmacotherapy
.
2019
;
39
(
3
):
346
54
.
32.
Zhou
Y
,
Gao
F
,
Chen
C
,
Ma
L
,
Yang
T
,
Liu
X
, et al
.
Development of a population pharmacokinetic model of vancomycin and its application in Chinese geriatric patients with pulmonary infections
.
Eur J Drug Metab Pharmacokinet
.
2019
;
44
(
3
):
361
70
.
33.
Lim
HS
,
Chong
YP
,
Noh
YH
,
Jung
JA
,
Kim
YS
.
Exploration of optimal dosing regimens of vancomycin in patients infected with methicillin-resistant Staphylococcus aureus by modeling and simulation
.
J Clin Pharm Ther
.
2014
;
39
(
2
):
196
203
.
34.
Purwonugroho
TA
,
Chulavatnatol
S
,
Preechagoon
Y
,
Chindavijak
B
,
Malathum
K
,
Bunuparadah
P
.
Population pharmacokinetics of vancomycin in Thai patients
.
Sci World J
.
2012
;
2012
:
762649
.
35.
Wu
CC
,
Shen
LJ
,
Hsu
LF
,
Ko
WJ
,
Wu
FLL
.
Pharmacokinetics of vancomycin in adults receiving extracorporeal membrane oxygenation
.
J Formos Med Assoc
.
2016
;
115
(
7
):
560
70
.
You do not currently have access to this content.