Introduction: Trastuzumab is commonly used to treat human epidermal growth factor receptor-2-positive (HER2+) breast cancer, but its efficacy is often limited by chemotherapy resistance. Recent studies have indicated that long non-coding RNAs (lncRNAs) play important roles in tumor progression and response to therapy. However, the regulatory mechanisms associating lncRNAs and trastuzumab resistance remain unknown. Methods: Quantitative polymerase chain reaction was performed to detect the expression of related genes. Western blot and immunofluorescence assays were used to evaluate protein expression levels. A series of gain- or loss-of-function assays confirmed the function of AGAP2-AS1 in trastuzumab resistance, both in vitro and in vivo. RNA immunoprecipitation and pull-down analyses were conducted to verify the interaction between METTL3/YTHDF2 and lncRNA AGAP2-AS1. Results: AGAP2-AS1 was upregulated in trastuzumab-resistant cells and SKBR-3R-generated xenografts in nude mice. Silencing AGAP2-AS1 significantly decreased trastuzumab-induced cytotoxicity both in vitro and in vivo. Furthermore, m6A methylation of AGAP2-AS1 was reduced in trastuzumab-resistant cells compared to that in parental cells. In addition, METTL3 increased m6A methylation of AGAP2-AS1, which finally induced the suppressed AGAP2-AS1 expression. Moreover, YTHDF2 was essential for METTL3-mediated m6A methylation of AGAP2-AS1. Functionally, AGAP2-AS1 regulated trastuzumab resistance by inducing autophagy and increasing ATG5 expression. Conclusion: we demonstrated that METTL3/YTHDF2-mediated m6A methylation increased the expression of AGAP2-AS1, which could promote trastuzumab resistance in breast cancer. AGAP2-AS1 regulates trastuzumab resistance by inducing autophagy. Therefore, AGAP2-AS1 may be a promising predictive biomarker and therapeutic target in patients with breast cancer.

1.
Gianni
L
,
Eiermann
W
,
Semiglazov
V
,
Manikhas
A
,
Lluch
A
,
Tjulandin
S
, et al
.
Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort
.
Lancet
.
2010
;
375
(
9712
):
377
84
.
2.
Bighin
C
,
Pronzato
P
,
Del Mastro
L
.
Trastuzumab emtansine in the treatment of HER-2-positive metastatic breast cancer patients
.
Future Oncol
.
2013
;
9
(
7
):
955
7
.
3.
Amadori
D
,
Milandri
C
,
Comella
G
,
Saracchini
S
,
Salvagni
S
,
Barone
C
, et al
.
A phase I/II trial of non-pegylated liposomal doxorubicin, docetaxel and trastuzumab as first-line treatment in HER-2-positive locally advanced or metastatic breast cancer
.
Eur J Cancer
.
2011
;
47
(
14
):
2091
8
.
4.
Herrera-Solorio
AM
,
Armas-Lopez
L
,
Arrieta
O
,
Zuniga
J
,
Pina-Sanchez
P
,
Avila-Moreno
F
.
Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response
.
Clin Epigenetics
.
2017
;
9
:
98
.
5.
Li
Z
,
Qian
J
,
Li
J
,
Zhu
C
.
Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway
.
Exp Ther Med
.
2019
;
18
(
1
):
435
42
.
6.
Chen
T
,
Liu
Z
,
Zeng
W
,
Huang
T
.
Down-regulation of long non-coding RNA HOTAIR sensitizes breast cancer to trastuzumab
.
Sci Rep
.
2019
;
9
(
1
):
19881
.
7.
Zhang
H
,
Zhang
XY
,
Kang
XN
,
Jin
LJ
,
Wang
ZY
.
LncRNA-SNHG7 enhances chemotherapy resistance and cell viability of breast cancer cells by regulating miR-186
.
Cancer Manag Res
.
2020
;
12
:
10163
72
.
8.
Zheng
Z
,
Chen
M
,
Xing
P
,
Yan
X
,
Xie
B
.
Increased expression of exosomal AGAP2-AS1 (AGAP2 antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity
.
Med Sci Monit
.
2019
;
25
:
2211
20
.
9.
Liu
K
,
Gao
Y
,
Gan
K
,
Wu
Y
,
Xu
B
,
Zhang
L
, et al
.
Prognostic roles of N6-methyladenosine METTL3 in different cancers: a system review and meta-analysis
.
Cancer Control
.
2021
;
28
:
1073274821997455
.
10.
Qin
Y
,
Li
L
,
Luo
E
,
Hou
J
,
Yan
G
,
Wang
D
, et al
.
Role of m6A RNA methylation in cardiovascular disease (Review)
.
Int J Mol Med
.
2020
;
46
(
6
):
1958
72
.
11.
Zhang
C
,
Fu
J
,
Zhou
Y
.
A review in Research progress concerning m6A methylation and immunoregulation
.
Front Immunol
.
2019
;
10
:
922
.
12.
Dong
H
,
Hu
J
,
Zou
K
,
Ye
M
,
Chen
Y
,
Wu
C
, et al
.
Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer
.
Mol Cancer
.
2019
;
18
(
1
):
3
.
13.
Li
P
,
Zhang
X
,
Wang
H
,
Wang
L
,
Liu
T
,
Du
L
, et al
.
MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2
.
Mol Cancer Ther
.
2017
;
16
(
4
):
739
51
.
14.
Li
P
,
Zhang
X
,
Wang
L
,
Du
L
,
Yang
Y
,
Liu
T
, et al
.
lncRNA HOTAIR contributes to 5FU resistance through suppressing miR-218 and activating NF-κB/TS signaling in colorectal cancer
.
Mol Ther Nucleic Acids
.
2017
;
8
:
356
69
.
15.
Yang
X
,
Zhang
S
,
He
C
,
Xue
P
,
Zhang
L
,
He
Z
, et al
.
METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST
.
Mol Cancer
.
2020
;
19
(
1
):
46
.
16.
Ren
M
,
Wei
CY
,
Wang
L
,
Deng
XY
,
Lu
NH
,
Gu
JY
.
Integration of individual prediction index based on autophagy-related genes and clinical phenomes in melanoma patients
.
Clin Transl Med
.
2020
;
10
(
4
):
e132
.
17.
Ma
HY
,
Li
Y
,
Yin
HZ
,
Yin
H
,
Qu
YY
,
Xu
QY
.
TNFAIP8 promotes cisplatin chemoresistance in triple-negative breast cancer by repressing p53-mediated miR-205-5p expression
.
Mol Ther Nucleic Acids
.
2020
;
22
:
640
56
.
18.
Hao
Q
,
Li
J
,
Zhang
Q
,
Xu
F
,
Xie
B
,
Lu
H
, et al
.
Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma
.
Clin Transl Med
.
2021
;
11
(
8
):
e500
.
19.
Verma
S
,
Miles
D
,
Gianni
L
,
Krop
IE
,
Welslau
M
,
Baselga
J
, et al
.
Trastuzumab emtansine for HER2-positive advanced breast cancer
.
N Engl J Med
.
2012
;
367
(
19
):
1783
91
.
20.
Perez
EA
,
de Haas
SL
,
Eiermann
W
,
Barrios
CH
,
Toi
M
,
Im
YH
, et al
.
Relationship between tumor biomarkers and efficacy in MARIANNE, a phase III study of trastuzumab emtansine ± pertuzumab versus trastuzumab plus taxane in HER2-positive advanced breast cancer
.
BMC Cancer
.
2019
;
19
(
1
):
517
.
21.
Gallardo
A
,
Lerma
E
,
Escuin
D
,
Tibau
A
,
Muñoz
J
,
Ojeda
B
, et al
.
Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas
.
Br J Cancer
.
2012
;
106
(
8
):
1367
73
.
22.
Shetty
P
,
Patil
VS
,
Mohan
R
,
D’souza
LC
,
Bargale
A
,
Patil
BR
, et al
.
Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer
.
Ann Clin Biochem
.
2017
;
54
(
4
):
463
71
.
23.
Montemurro
F
,
Prat
A
,
Rossi
V
,
Valabrega
G
,
Sperinde
J
,
Peraldo-Neia
C
, et al
.
Potential biomarkers of long-term benefit from single-agent trastuzumab or lapatinib in HER2-positive metastatic breast cancer
.
Mol Oncol
.
2014
;
8
(
1
):
20
6
.
24.
Ponde
N
,
Bradbury
I
,
Lambertini
M
,
Ewer
M
,
Campbell
C
,
Ameels
H
, et al
.
Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: a NeoALTTO sub-study (BIG 1-06)
.
Breast Cancer Res Treat
.
2018
;
168
(
3
):
631
8
.
25.
Qian
B
,
Wang
P
,
Zhang
D
,
Wu
L
.
m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2
.
Cell Death Discov
.
2021
;
7
(
1
):
157
.
26.
Clancy
MJ
,
Shambaugh
ME
,
Timpte
CS
,
Bokar
JA
.
Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene
.
Nucleic Acids Res
.
2002
;
30
(
20
):
4509
18
.
27.
Jiang
X
,
Liu
B
,
Nie
Z
,
Duan
L
,
Xiong
Q
,
Jin
Z
, et al
.
The role of m6A modification in the biological functions and diseases
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
74
.
28.
Huang
S
,
Luo
S
,
Gong
C
,
Liang
L
,
Xiao
Y
,
Li
M
, et al
.
MTTL3 upregulates microRNA-1246 to promote occurrence and progression of NSCLC via targeting paternally expressed gene 3
.
Mol Ther Nucleic Acids
.
2021
;
24
:
542
53
.
29.
Gheller
BJ
,
Blum
JE
,
Fong
EHH
,
Malysheva
OV
,
Cosgrove
BD
,
Thalacker-Mercer
AE
.
A defined N6-methyladenosine (m(6)A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions
.
Cell Death Discov
.
2020
;
6
(
1
):
95
.
30.
Xu
W
,
Li
J
,
He
C
,
Wen
J
,
Ma
H
,
Rong
B
, et al
.
METTL3 regulates heterochromatin in mouse embryonic stem cells
.
Nature
.
2021
;
591
(
7849
):
317
21
.
31.
Tao
L
,
Yang
L
,
Huang
X
,
Hua
F
,
Yang
X
.
Reconstruction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy
.
Front Genet
.
2019
;
10
:
1149
.
32.
Patil
DP
,
Chen
CK
,
Pickering
BF
,
Chow
A
,
Jackson
C
,
Guttman
M
, et al
.
m(6)A RNA methylation promotes XIST-mediated transcriptional repression
.
Nature
.
2016
;
537
(
7620
):
369
73
.
33.
Gong
C
,
Fan
Y
,
Liu
J
.
METTL14 mediated m6A modification to LncRNA ZFAS1/RAB22A: a novel therapeutic target for atherosclerosis
.
Int J Cardiol
.
2021
;
328
:
177
.
34.
Nie
Y
,
Tian
GG
,
Zhang
L
,
Lee
T
,
Zhang
Z
,
Li
J
, et al
.
Identifying cortical specific long noncoding RNAs modified by m(6)A RNA methylation in mouse brains
.
Epigenetics
.
2020
;
16
(
11
):
1260
76
.
35.
Zhang
Z
,
Theler
D
,
Kaminska
KH
,
Hiller
M
,
de la Grange
P
,
Pudimat
R
, et al
.
The YTH domain is a novel RNA binding domain
.
J Biol Chem
.
2010
;
285
(
19
):
14701
10
.
36.
Meyer
KD
,
Jaffrey
SR
.
Rethinking m(6)A readers, writers, and erasers
.
Annu Rev Cell Dev Biol
.
2017
;
33
:
319
42
.
37.
Wang
X
,
Lu
Z
,
Gomez
A
,
Hon
GC
,
Yue
Y
,
Han
D
, et al
.
N6-methyladenosine-dependent regulation of messenger RNA stability
.
Nature
.
2014
;
505
(
7481
):
117
20
.
38.
Zhu
T
,
Roundtree
IA
,
Wang
P
,
Wang
X
,
Wang
L
,
Sun
C
, et al
.
Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine
.
Cell Res
.
2014
;
24
(
12
):
1493
6
.
39.
Sun
W
,
Li
J
,
Zhou
L
,
Han
J
,
Liu
R
,
Zhang
H
, et al
.
The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer
.
Theranostics
.
2020
;
10
(
5
):
1981
96
.
You do not currently have access to this content.