Background: In cystic fibrosis (CF), genetic mutations in the CF transmembrane conductance regulator (CFTR) gene cause reduced chloride efflux from ciliated airway epithelial cells. This results in a reduction in periciliary liquid (PCL) depth of the airway surface liquid due to associated reduced water efflux. PCL layer dehydration reduces mucociliary clearance (MCC), leading to airway obstruction (reduced airflow and inflammation due to pathogen invasion) with mucus plug formation. Summary: Rehydrating mucus increases MCC. Mucus hydration can be achieved by direct hydration (administering osmotic agents to set up an osmotic gradient), using CFTR modulators to correct dysfunctional CFTR, or it can be achieved pharmacologically (targeting other ion channels on airway epithelial cells). Key Messages: The molecular mechanisms of several therapies are discussed in the context of pre-clinical and clinical trial studies. Currently, only the osmotic agent 7% hypertonic saline and the CFTR ‘potentiator' VX-770 (ivacaftor) are used clinically to hydrate mucus. Emerging therapies include the osmotic agent mannitol (Bronchitol), the intracellular Ca2+-raising agent Moli1901/lancovutide, the CFTR potentiator sildenafil [phosphodiesterase type 5 (PDE5) inhibitor] and the CFTR ‘corrector' VX-809 (lumacaftor). Other CFTR correctors (e.g. ‘chemical chaperones') are also showing pre-clinical promise.

1.
Rogers DF, Barnes PJ: Treatment of airway mucus hypersecretion. Ann Med 2006;38:116-125.
2.
Derichs N, Jin BJ, Song Y, et al: Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J 2011;25:2325-2332.
3.
Kerem B, Rommens JM, Buchanan JA, et al: Identification of the cystic fibrosis gene: genetic analysis. Science 1989;245:1073-1080.
4.
Rowntree RK, Harris A: The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003;67:471-485.
5.
Rogan MP, Stoltz DA, Hornick DB: Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011;139:1480-1490.
6.
Osborne L, Santis G, Schwarz M, et al: Incidence and expression of the N1303K mutation of the cystic fibrosis (CFTR) gene. Hum Genet 1992;89:653-658.
7.
Rich DP, Anderson MP, Gregory RJ, et al: Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 1990;347:358-363.
8.
Hwang TC, Sheppard DN: Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerization. J Physiol 2009;587:2151-2161.
9.
Boucher RC: Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007;13:231-240.
10.
Boucher RC: Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 2007;58:157-170.
11.
Boucher RC: New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 2004;23:146-158.
12.
Robinson M, Hemming AL, Regnis JA, et al: Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax 1997;52:900-903.
13.
Boucher RC: Human airway ion transport. Part two. Am J Respir Crit Care Med 1994;150:581-593.
14.
Robinson M, Regnis JA, Bailey DL, et al: Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 1996;153:1503-1509.
15.
Regnis JA, Robinson M, Bailey DL, et al: Mucociliary clearance in patients with cystic fibrosis and in normal subjects. Am J Respir Crit Care Med 1994;150:66-71.
16.
Button B, Boucher RC; University of North Carolina Virtual Lung Group: Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 2008;163:189-201.
17.
Rasgado-Flores H, Krishna Mandava V, Siman H, et al: Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors. Am J Physiol Cell Physiol 2013;305:C1114-C1122.
18.
King M, Dasgupta B, Tomkiewicz RP, et al: Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. Am J Respir Crit Care Med 1997;156:173-177.
19.
Assouline G, Leibson V, Danon A: Stimulation of prostaglandin output from rat stomach by hypertonic solutions. Eur J Pharmacol 1977;44:271-273.
20.
Haxel BR, Schafer D, Klimek L, et al: Prostaglandin E2 activates the ciliary beat frequency of cultured human nasal mucosa via the second messenger cyclic adenosine monophosphate. Eur Arch Otorhinolaryngol 2001;258:230-235.
21.
Donaldson SH, Bennett WD, Zeman KL, et al: Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006;354:241-250.
22.
Elkins MR, Robinson M, Rose BR, et al: A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006;354:229-240.
23.
Rosenfeld M, Davis S, Brumback L, et al: Inhaled hypertonic saline in infants and toddlers with cystic fibrosis: short-term tolerability, adherence, and safety. Pediatr Pulmonol 2011;46:666-671.
24.
Rosenfeld M, Ratjen F, Brumback L, et al: Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 2012;307:2269-2277.
25.
Subbarao P, Stanojevic S, Brown M, et al: Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 2013;188:456-460.
26.
Beydon N, Robinson PD: Early intervention for newborns screened for cystic fibrosis. Am J Respir Crit Care Med 2013;188:409-410.
27.
Robinson M, Daviskas E, Eberl S, et al: The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. Eur Respir J 1999;14:678-685.
28.
Daviskas E, Rubin BK: Effect of inhaled dry powder mannitol on mucus and its clearance. Expert Rev Respir Med 2013;7:65-75.
29.
Tiddens HA, Donaldson SH, Rosenfeld M, et al: Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively? Pediatr Pulmonol 2010;45:107-117.
30.
Boucher RC: Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 2007;261:5-16.
31.
Daviskas E, Anderson SD, Eberl S, et al: Inhalation of dry powder mannitol improves clearance of mucus in patients with bronchiectasis. Am J Respir Crit Care Med 1999;159:1843-1848.
32.
Bilton D, Robinson P, Cooper P, et al: Inhaled dry powder mannitol in cystic fibrosis: an efficacy and safety study. Eur Respir J 2011;38:1071-1080.
33.
Aitken ML, Bellon G, De Boeck K, et al: Long-term inhaled dry powder mannitol in cystic fibrosis: an international randomized study. Am J Respir Crit Care Med 2012;185:645-652.
34.
Teper A, Jaques A, Charlton B: Inhaled mannitol in patients with cystic fibrosis: a randomised open-label dose response trial. J Cyst Fibros 2011;10:1-8.
35.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01883531.
36.
Shoshani T, Augarten A, Gazit E, et al: Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet 1992;50:222-228.
37.
Dalemans W, Barbry P, Champigny G, et al: Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 1991;354:526-528.
38.
Lewis HA, Buchanan SG, Burley SK, et al: Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 2004;23:282-293.
39.
Haardt M, Benharouga M, Lechardeur D, et al: C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 1999;274:21873-21877.
40.
Kerem E: Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy. Pediatr Pulmonol 2005;40:183-196.
41.
Derichs N: Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur Respir Rev 2013;22:58-65.
42.
Howard M, Frizzell RA, Bedwell DM: Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996;2:467-469.
43.
Du M, Jones JR, Lanier J, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med 2002;80:595-604.
44.
Smyth A, Lewis S, Bertenshaw C, et al: Case-control study of acute renal failure in patients with cystic fibrosis in the UK. Thorax 2008;63:532-535.
45.
Welch EM, Barton ER, Zhuo J, et al: PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447:87-91.
46.
Sermet-Gaudelus I, Boeck KD, Casimir GJ, et al: Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 2010;182:1262-1272.
47.
Kerem E, Hirawat S, Armoni S, et al: Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008;372:719-727.
48.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01140451.
49.
Clunes MT, Boucher RC: Front-runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis. Curr Opin Pharmacol 2008;8:292-299.
50.
Rowe SM, Verkman AS: Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med 2013, DOI: 10.1101/cshperspect.a009761.
51.
Chanoux RA, Rubenstein RC: Molecular chaperones as targets to circumvent the CFTR defect in cystic fibrosis. Front Pharmacol 2012;3:137.
52.
Kopito RR: Biosynthesis and degradation of CFTR. Physiol Rev 1999;79:S167-S173.
53.
Denning GM, Anderson MP, Amara JF, et al: Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992;358:761-764.
54.
Sato S, Ward CL, Krouse ME, et al: Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 1996;271:635-638.
55.
Fischer H, Fukuda N, Barbry P, et al: Partial restoration of defective chloride conductance in DeltaF508 CF mice by trimethylamine oxide. Am J Physiol Lung Cell Mol Physiol 2001;281:L52-L57.
56.
Zhang XM, Wang XT, Yue H, et al: Organic solutes rescue the functional defect in delta F508 cystic fibrosis transmembrane conductance regulator. J Biol Chem 2003;278:51232-51242.
57.
Hutt D, Balch WE: Cell biology. The proteome in balance. Science 2010;329:766-767.
58.
Nieddu E, Pollarolo B, Merello L, et al: F508del-CFTR rescue: a matter of cell stress response. Curr Pharm Des 2013;19:3476-3496.
59.
Alberti S, Bohse K, Arndt V, et al: The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004;15:4003-4010.
60.
Choo-Kang LR, Zeitlin PL: Induction of HSP70 promotes DeltaF508 CFTR trafficking. Am J Physiol Lung Cell Mol Physiol 2001;281:L58-L68.
61.
Imai J, Maruya M, Yashiroda H, et al: The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 2003;22:3557-3567.
62.
Welch WJ, Brown CR: Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1996;1:109-115.
63.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00016744.
64.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00590538.
65.
Rubenstein RC, Zeitlin PL: A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 1998;157:484-490.
66.
Rubenstein RC, Egan ME, Zeitlin PL: In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 1997;100:2457-2465.
67.
Rubenstein RC, Zeitlin PL: Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol 2000;278:C259-C267.
68.
Egan ME, Glockner-Pagel J, Ambrose C, et al: Calcium-pump inhibitors induce functional surface expression of Delta F508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 2002;8:485-492.
69.
Egan ME, Pearson M, Weiner SA, et al: Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004;304:600-602.
70.
Grubb BR, Gabriel SE, Mengos A, et al: SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis. Am J Respir Cell Mol Biol 2006;34:355-363.
71.
Song Y, Sonawane ND, Salinas D, et al: Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models. J Biol Chem 2004;279:40629-40633.
72.
Dragomir A, Bjorstad J, Hjelte L, et al: Curcumin does not stimulate cAMP-mediated chloride transport in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 2004;322:447-451.
73.
Mall M, Kunzelmann K: Correction of the CF defect by curcumin: hypes and disappointments. BioEssays 2005;27:9-13.
74.
Harada K, Okiyoneda T, Hashimoto Y, et al: Curcumin enhances cystic fibrosis transmembrane regulator expression by down-regulating calreticulin. Biochem Biophys Res Commun 2007;353:351-356.
75.
Gelman JS, Sironi J, Berezniuk I, et al: Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One 2013;8:e53263.
76.
Trzcinska-Daneluti AM, Ly D, Huynh L, et al: High-content functional screen to identify proteins that correct F508del-CFTR function. Mol Cell Proteomics 2009;8:780-790.
77.
Vij N, Fang S, Zeitlin PL: Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006;281:17369-17378.
78.
Norez C, Noel S, Wilke M, et al: Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the alpha-glucosidase inhibitor miglustat. FEBS Lett 2006;580:2081-2086.
79.
Lubamba B, Lebacq J, Lebecque P, et al: Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. Am J Respir Crit Care Med 2009;179:1022-1028.
80.
Farinha CM, Amaral MD: Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 2005;25:5242-5252.
81.
Okiyoneda T, Niibori A, Harada K, et al: Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR. Biochim Biophys Acta 2008;1783:1585-1594.
82.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00742092.
83.
Leonard A, Lebecque P, Dingemanse J, et al: A randomized placebo-controlled trial of miglustat in cystic fibrosis based on nasal potential difference. J Cystic Fibrosis 2012;11:231-236.
84.
Jenkins BA, Glenn LL: Miglustat effects on the basal nasal potential differences in cystic fibrosis. J Cyst Fibros 2013;12:88.
85.
Leonard A, Lebecque P, Dingemanse J, et al: Miglustat effects on the basal nasal potential differences in cystic fibrosis. J Cyst Fibros 2013;12:89.
86.
Hutt DM, Herman D, Rodrigues AP, et al: Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol 2010;6:25-33.
87.
Wang X, Venable J, LaPointe P, et al: Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 2006;127:803-815.
88.
Basile A, Pascale M, Franceschelli S, et al: Matrine modulates HSC70 levels and rescues DeltaF508-CFTR. J Cell Physiol 2012;227:3317-3323.
89.
Van Goor F, Straley KS, Cao D, et al: Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 2006;290:L1117-L1130.
90.
Kim Chiaw P, Wellhauser L, Huan LJ, et al: A chemical corrector modifies the channel function of F508del-CFTR. Mol Pharmacol 2010;78:411-418.
91.
Okiyoneda T, Veit G, Dekkers JF, et al: Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol 2013;9:444-454.
92.
Loo TW, Bartlett MC, Clarke DM: Bithiazole correctors rescue CFTR mutants by two different mechanisms. Biochemistry 2013;52:5161-5163.
93.
Pedemonte N, Lukacs GL, Du K, et al: Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005;115:2564-2571.
94.
Ren HY, Grove DE, De La Rosa O, et al: VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 2013;24:3016-3024.
95.
Clancy JP, Rowe SM, Accurso FJ, et al: Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 2012;67:12-18.
96.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01768663.
97.
Pyle LC, Ehrhardt A, Mitchell LH, et al: Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2011;301:L587-L597.
98.
Pasyk S, Li C, Ramjeesingh M, Bear CE: Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease. Biochem J 2009;418:185-190.
99.
Yu H, Burton B, Huang CJ, et al: Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 2012;11:237-245.
100.
Jih KY, Hwang TC: VX-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA 2013;110:4404-4409.
101.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01784419.
102.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01060566.
103.
Boyle MP, Bell SC, Konstan MW, et al: A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2014;2:527-538.
104.
Hwang TC, Wang F, Yang IC, et al: Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol 1997;273:C988-C998.
105.
Yu YC, Miki H, Nakamura Y, et al: Curcumin and genistein additively potentiate G551D-CFTR. J Cyst Fibros 2011;10:243-252.
106.
Ai T, Bompadre SG, Wang X, et al: Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents. Mol Pharmacol 2004;65:1415-1426.
107.
Sohma Y, Yu YC, Hwang TC: Curcumin and genistein: the combined effects on disease-associated CFTR mutants and their clinical implications. Curr Pharm Des 2013;19:3521-3528.
108.
Conger BT, Zhang S, Skinner D, et al: Comparison of cystic fibrosis transmembrane conductance regulator (CFTR) and ciliary beat frequency activation by the CFTR modulators Genistein, VRT-532, and UCCF-152 in primary sinonasal epithelial cultures. JAMA Otolaryngol Head Neck Surg 2013;139:822-827.
109.
Drumm ML, Wilkinson DJ, Smit LS, et al: Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 1991;254:1797-1799.
110.
Cheng SH, Gregory RJ, Marshall J, et al: Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990;63:827-834
111.
Grubb B, Lazarowski E, Knowles M, et al: Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am J Respir Cell Mol Biol 1993;8:454-460.
112.
Lubamba B, Lebacq J, Reychler G, et al: Inhaled phosphodiesterase type 5 inhibitors restore chloride transport in cystic fibrosis mice. Eur Respir J 2011;37:72-78.
113.
Dhooghe B, Noel S, Bouzin C, et al: Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice. PLoS One 2013;8:e77314.
114.
Robert R, Carlile GW, Pavel C, et al: Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharmacol 2008;73:478-489.
115.
Lubamba B, Lecourt H, Lebacq J, et al: Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am J Respir Crit Care Med 2008;177:506-515.
116.
Leier G, Bangel-Ruland N, Sobczak K, et al: Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease. Cell Physiol Biochem 2012;29:775-790.
117.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01132482.
118.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00659529.
119.
Chen JH, Stoltz DA, Karp PH, et al: Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 2010;143:911-923.
120.
Itani OA, Chen JH, Karp PH, et al: Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance. Proc Natl Acad Sci USA 2011;108:10260-10265.
121.
Kirk KL: Being positive: revisiting the elevated sodium permeability hypothesis in cystic fibrosis. J Physiol 2013;591:3675-3676.
122.
Hollenhorst MI, Richter K, Fronius M: Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011;2011:174306.
123.
Althaus M: ENaC inhibitors and airway re-hydration in cystic fibrosis: state of the art. Curr Mol Pharmacol 2013;6:3-12.
124.
Hirsh AJ, Sabater JR, Zamurs A, et al: Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease. J Pharmacol Exp Ther 2004;311:929-938.
125.
Hirsh AJ, Zhang J, Zamurs A, et al: Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N′-4-[4-(2,3-dihydroxypropoxy)phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 2008;325:77-88.
126.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/study/NCT00274313.
127.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00852839.
128.
Hirsh AJ, St George J, Thelin W, et al: RGS-9411: a potential aerosol pharmacotherapy for CF. Am J Respir Crit Care Med 2009;179:A1195.
129.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00800579.
130.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00999531.
131.
O'Riordan TG, Donn KH, Hodsman P, et al: Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: phase 1 trial of GS-9411. J Aerosol Med Pulm Drug Deliv 2014;27:200-208.
132.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01025713.
133.
Hunt T, Atherton-Watson HC, Axford J, et al: Discovery of a novel chemotype of potent human ENaC blockers using a bioisostere approach. Part 1: quaternary amines. Bioorg Med Chem Lett 2012;22:929-932.
134.
Hunt T, Atherton-Watson HC, Collingwood SP, et al: Discovery of a novel chemotype of potent human ENaC blockers using a bioisostere approach. Part 2: alpha-branched quaternary amines. Bioorg Med Chem Lett 2012;22:2877-2879.
135.
Maekawa A, Kakizoe Y, Miyoshi T, et al: Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension. J Hypertens 2009;27:181-189.
136.
Coote K, Atherton-Watson HC, Sugar R, et al: Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J Pharmacol Exp Ther 2009;329:764-774.
137.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00506792.
138.
Rowe SM, Reeves G, Hathorne H, et al: Reduced sodium transport with nasal administration of the prostasin inhibitor camostat in subjects with cystic fibrosis. Chest 2013;144:200-207.
139.
Passero CJ, Carattino MD, Kashlan OB, et al: Defining an inhibitory domain in the gamma subunit of the epithelial sodium channel. Am J Physiol Renal Physiol 2010;299:F854-F861.
140.
Vallon V, Rieg T: Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011;301:F463-F475.
141.
Namkung W, Yao Z, Finkbeiner WE, et al: Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J 2011;25:4048-4062.
142.
Lazarowski ER, Boucher RC: Purinergic receptors in airway epithelia. Curr Opin Pharmacol 2009;9:262-267.
143.
Olivier KN, Bennett WD, Hohneker KW, et al: Acute safety and effects on mucociliary clearance of aerosolized uridine 5′-triphosphate +/- amiloride in normal human adults. Am J Respir Crit Care Med 1996;154:217-223.
144.
Yerxa BR, Sabater JR, Davis CW, et al: Pharmacology of INS37217 [P(1)-(uridine 5′)- P(4)-(2′-deoxycytidine 5′)tetraphosphate, tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of cystic fibrosis. J Pharmacol Exp Ther 2002;302:871-880.
145.
Monroe JS, Tomas N, Seiko FO, et al: Denufosol stimulates chloride transport, inhibits sodium absorption and restores airway surface liquid layer in primary airway epithelial cells from CF patients. Am J Respir Crit Care Med 2011;183:A6123.
146.
ClinicalTrials.gov. A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/study/NCT00625612.
147.
ClinicalTrials.gov. A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/study/NCT00357279.
148.
Accurso FJ, Moss RB, Wilmott RW, et al: Denufosol tetrasodium in patients with cystic fibrosis and normal to mildly impaired lung function. Am J Respir Crit Care Med 2011;183:627-634.
149.
Ratjen F, Durham T, Navratil T, et al: Long term effects of denufosol tetrasodium in patients with cystic fibrosis. J Cyst Fibros 2012;11:539-549.
150.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT01181622.
151.
Stick SM, Sly PD: Exciting new clinical trials in cystic fibrosis: infants need not apply. Am J Respir Crit Care Med 2011;183:1577-1578.
152.
Melvin JE, Yule D, Shuttleworth T, et al: Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 2005;67:445-469.
153.
Moody M, Pennington C, Schultz C, et al: Inositol polyphosphate derivative inhibits Na+ transport and improves fluid dynamics in cystic fibrosis airway epithelia. Am J Physiol Cell Physiol 2005;289:C512-C520.
154.
Traynor-Kaplan AE, Moody M, Nur M, et al: INO-4995 therapeutic efficacy is enhanced with repeat dosing in cystic fibrosis knockout mice and human epithelia. Am J Respir Cell Mol Biol 2010;42:105-112.
155.
Tian Y, Schreiber R, Wanitchakool P, et al: Control of TMEM16A by INO-4995 and other inositolphosphates. Br J Pharmacol 2013;168:253-265.
156.
Cloutier MM, Guernsey L, Sha'afi RI: Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 1993;10:107-118.
157.
Sheth TR, Henderson RM, Hladky SB, et al: Ion channel formation by duramycin. Biochim Biophys Acta 1992;1107:179-185.
158.
Grasemann H, Stehling F, Brunar H, et al: Inhalation of Moli1901 in patients with cystic fibrosis. Chest 2007;131:1461-1466.
159.
ClinicalTrials.gov: A service of the US National Institutes of Health. http://www.clinicaltrials.gov/ct2/show/NCT00671736.
160.
Lee TW, Southern KW: Topical cystic fibrosis transmembrane conductance regulator gene replacement for cystic fibrosis-related lung disease. Cochrane Database Syst Rev 2013;09:CD005599.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.