The G protein-coupled receptor Mas was recently described as an angiotensin-(1–7) [Ang-(1–7)] receptor. In the present study, we demonstrate an antinociceptive effect of Ang-(1–7) for the first time. Additionally, we evaluated the anatomical localization of Mas in the dorsal root ganglia using immunofluorescence. This is the first evidence indicating that this receptor is present in sensitive neurons. The antinociceptive effect was demonstrated using the rat paw pressure test. For this test, sensitivity is increased by intraplantar injection of prostaglandin E2. Ang-(1–7) administered locally into the right hind paw elicited a dose-dependent antinociceptive effect. Because the higher dose of Ang-(1–7) did not produce an effect when injected into the contralateral paw, this effect was considered local. The specific antagonist for the Mas receptor, A-779, inhibited the peripheral antinociception induced by exposure to 4 µg/paw Ang-(1–7) in a dose-dependent manner. The highest dose completely reversed the antinociceptive effect induced by Ang-(1–7), suggesting that the Mas receptor is an obligatory component in this process and that other angiotensin receptors may not be involved. When injected alone, the antagonist was unable to induce hyperalgesia or antinociception. Alternatively, naloxone was unable to inhibit the antinociceptive effect induced by Ang-(1–7), suggesting that endogenous opioid peptides may not be involved in this response. These data provide the first anatomical basis for the physiological role of Ang-(1–7) in the modulation of pain perception via Mas receptor activation in an opioid-independent pathway. Taken together, these results provide new perspectives for the development of a new class of analgesic drugs.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.