The carotid artery has a pivotal role in the body since it supplies the head and neck with oxygenated blood. Alterations in the functional and structural integrity of these vessels can decrease blood flow to the brain. For this reason, it is important to understand how the carotid artery responds to various stimuli. The organ bath is a traditional experimental set-up that has been used extensively to investigate the (patho)physiology and pharmacology of in vitro tissue preparations including the rat carotid artery. Molecular biology developed from related fields such as biochemistry, genetics and biophysics is now considered an important tool for understanding physiological pathways in a variety of tissues. Several local and systemic factors regulate carotid reactivity, including vaso-active peptides, such as endothelin 1 (ET-1), angiotensin II (Ang II) and bradykinin (BK). These vaso-active peptides play a fundamental role in controlling the functional and structural integrity of the arterial wall and may be important in physiological processes and in pathological mechanisms underlying vascular diseases. In the rat carotid, these peptides induce vasoconstriction or relaxation by the release of endothelium-derived relaxing factors, such as nitric oxide and prostacyclin. Identification of such signal transduction processes is essential for understanding the mechanisms that regulate vascular smooth muscle cell function, both physiologically and pathophysiologically. The present review discusses the mechanisms of action, distribution of ET-1, Ang II and BK and their receptors in the rat carotid. With this purpose, data obtained in functional studies using classical pharmacological approaches as well as data obtained in molecular biology experiments are discussed.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.